Answer all the questions in this section. All questions carry equal marks.

- 1. Two independent events K and L are such that p(K) = x, $p(L) = (x + \frac{1}{5})$ and $p(K \cap L) = \frac{3}{20}$. Find the value of x.
- 2. Seven participants in an art contest were ranked by two judges as follows:

Participant	A	В	C	D	E	F	G
1st Judge	3	4	1	- 6	5	7	2
2nd Judge	3	6	2	5	7	4	1

- (a) Calculate, correct to three decimal places, the Spearman's rank correlation coefficient for the scores of the judges.
- (b) Comment on your results.
- 3. \mathbf{F}_1 (3 N, 030°), \mathbf{F}_2 (4 N, 090°), \mathbf{F}_3 (6 N, 135°) and \mathbf{F}_4 (7 N, 240°) act on a particle. Find, correct to two decimal places, the magnitude of the resultant force.
- 4. A uniform pole, PQ, 30 m long and of mass 4 kg is carried by a boy at P and a man 8 m away from Q. Find the distance from P where a mass of 20 kg should be attached so that the man's support is twice that of the boy, if the system is in equilibrium.

[Take
$$g = 10 \text{ ms}^{-2}$$
]

- 5. Solve: $3x^{\frac{1}{2}} + 5 2x^{-\frac{1}{2}} = 0$.
- 6. A point P divides the straight line joining X(1, -2) and Y(5, 3) internally in a ratio 2:3. Find the:
 - (a) coordinates of P;
 - (b) equation of the straight line that passes through N(3, -5) and P.
- 7. (a) Find the sum of the series: $32 + 8 + 2 + \dots$
 - (b) Simplify: $\frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}} \frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}}$.
- 8. Without using Mathematical tables or calculator, find, in surd form (radicals), the value of tan 22.5°.

Answer four questions only from this section with at least one question from each part.

All questions carry equal marks.

PART I PURE MATHEMATICS

- 9. (a) Find the range of values of x for which $2x^2 \ge 9x + 5$.
 - (b) (i) Write down in ascending powers of x the binomial expansion of $(2+x)^6 (2-x)^6$.
 - (ii) Using the result in (b)(i), evaluate $(2.01)^6 (1.99)^6$, correct to **four** decimal places.
- 10. A circle $x^2 + y^2 2x 4y 5 = 0$ with centre O is cut by a line y = 2x + 5 at points P and Q. Show that \overline{QO} is perpendicular to \overline{PO} .
- 11. (a) Given that $M = \begin{pmatrix} 3 & -5 \\ 4 & 2 \end{pmatrix}$ find:
 - (i) M^{-1} , inverse of M.
 - (ii) the image of (1, -1) under M^{-1} .
 - (b) Two linear transformations P and Q, are defined by $P: (x, y) \to (5x + 3y, 6x + 4y)$ and $Q: (x, y) \to (4x 3y, -6x + 5y)$.
 - (i) Write down the matrices P and O.
 - (ii) Find the matrix R defined by R = PO.
 - (iii) Deduce Q^{-1} , the inverse of Q.

PART II

STATISTICS AND PROBABILITY

- 12. A box contains 5 blue, 7 green and 4 red identical balls. **Three** balls are picked from the box one after the other without replacement. Find, the probability of picking:
 - (a) two green balls and a blue ball;
 - (b) no blue ball;
 - (c) at least one green ball;
 - (d) three balls of the same colour.
- 13. The ages, x (in years), of a group of 18 adults have the following statistics: $\Sigma x = 745$ and $\Sigma x^2 = 33951$.
 - (a) Calculate the:
 - (i) mean age;
 - (ii) standard deviation of the ages of the adults, correct to two decimal places.

- (b) One person leaves the group and the mean age of the remaining 17 is 41 years. Find the:
 - (i) age of the person who left;
 - (ii) standard deviation of the remaining 17 adults, correct to two decimal places.

PART III

VECTORS AND MECHANICS

- 14. Three forces 0i 63j, 32.14i + 38.3j and 14i 24.25j act on a body of mass 5 kg. Find, correct to the nearest whole number, the:
 - (a) magnitude of the resultant force;
 - (b) direction of the resultant force;
 - (c) acceleration of the body.
- 15. Two particles **P** and **Q** move towards each other along a straight line MN, 51 metres long. **P** starts from M with velocity 5 m s⁻¹ and constant acceleration of 1 m s⁻². **Q** starts from N at the same time with velocity 6 m s⁻¹ and at a constant acceleration of 3 m s⁻². Find the time when the:
 - (a) particles are 30 metres apart;
 - (b) particles meet;
 - (c) velocity of P is $\frac{3}{4}$ of the velocity of Q.

END OF PAPER