Answer all the questions in this section. All questions carry equal marks.

- 1. (a) Without using mathematical tables or calculators, evaluate $\frac{0.015 \times 0.567}{0.05 \times 0.189}$, leaving the answer in standard form.
 - (b) If $\frac{5y-x}{8y+3x} = \frac{1}{5}$, find, correct to **two** decimal places, the value of $\frac{x}{y}$.
- 2. (a) Z varies directly as x and inversely as **twice** the cube root of y. If Z = 8, when x = 4 and $y = \frac{1}{8}$, find the relation for y in terms of x and Z.
 - (b) Factorize completely: $4b^2 ab + (a + 9b)^2 a^2$.
- 3. (a) Solve $\frac{5x-7}{6} + \frac{2x-3}{4} = -\frac{2}{3}$.
 - (b) Evaluate: $\frac{\sqrt{28} + \sqrt{343}}{2\sqrt{63}} + \frac{5}{3}$.
- 4. A car dealer made a profit of 22.5 % by selling a car for GH¢ 58,000.00. Find, correct to two decimal places, the percentage profit if the car had been sold for GH¢ 61,200.00.
- 5. (a) A number is chosen at random from $Q = \{1, 2, 3, ..., 10\}$. Find the probability that the chosen number is either a prime factor of 42 or a multiple of 3.
 - (b) If $110_x = 1020_{\text{four}}$, find the value of x.

[60 marks]

Answer five questions only from this section. All questions carry equal marks.

6. (a) If
$$\mathbf{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$ and $\mathbf{r} = \mathbf{a} + \frac{1}{2} (\mathbf{a} - \mathbf{b})$, find:

- (i) r
- (ii) | r|.

(b) Given that
$$a = bc$$
 and $n = \frac{mk}{ec}$,

- (i) express k in terms of a, b, e, m and n;
- (ii) find, correct to **three** significant figures, the value of k, when $a = \frac{1}{2}$, b = -4, e = 3, m = 7 and n = -5.
- 7. (a) Copy and complete the table of values for $y = 5\sin x + 9\cos x$ for $0^{\circ} \le x \le 150^{\circ}$.

х	0°	30°	60°	90°	120°	150°
у		10.3	n n 1		-0.2	2

- Using a scale of 2 cm to 30° on the x-axis and 2 cm to 2 units on the y-axis, draw the graph of $y = 5\sin x + 9\cos x$ for $0^{\circ} \le x \le 150^{\circ}$.
- (c) Use the graph to solve the equations:
 - (i) $5\sin x + 9\cos x = 0$;
 - (ii) $5\sin x + 9\cos x = 2.$
- (d) Using the graph, find, the value of y when $x = 45^{\circ}$.
- 8. (a) Using ruler and a pair of compasses only, construct:
 - the quadrilateral ABCD such that |AB| = 6.5 cm, |BC| = 9 cm, |AD| = 4 cm, $\angle ABC = 60^{\circ}$ and $\angle BAD = 120^{\circ}$;
 - (ii) the perpendicular bisectors of \overline{BC} and \overline{CD} .
 - (b) Locate the point of intersection, T, of the two bisectors in 8(a)(ii).
 - (c) With the point T in 8(b) as centre, draw a circle to pass through the vertices B, C and D.
 - (d) Measure:
 - (i) |BT|;
 - (ii) |CD|.

- 9. Using a scale of 2 cm to 1 unit on both axes, draw on a sheet of graph paper, two perpendicular axes 0x and 0y for $-5 \le x \le 5$ and $-5 \le y \le 5$.
 - (b) Draw on the same graph sheet, indicating clearly all vertices and their coordinates:
 - (i) $\triangle ABC$ with vertices A(2, 1), B(1, 4) and C(-1, 2);
 - (ii) the image $\Delta A_1 B_1 C_1$ of ΔABC under a reflection in the line y = 0, where $A \to A_1$, $B \to B_1$ and $C \to C_1$,
 - (iii) the image $\Delta A_2 B_2 C_2$ of ΔABC under a translation by the vector $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$, where $A \to A_2$, $B \to B_2$ and $C \to C_2$,
 - (iv) the image $\Delta A_3 B_3 C_3$ of ΔABC under an anticlockwise rotation of 90° about the origin, where $A \to A_3$, $B \to B_3$ and $C \to C_3$.
 - (c) What single transformation maps $\Delta A_1 B_1 C_1$ onto $\Delta A_3 B_3 C_3$, where $A_1 \rightarrow A_3$, $B_1 \rightarrow B_3$ and $C_1 \rightarrow C_3$.
- 10. (a) In a class of 50 students, 24 like football, 21 basketball and 18 cricket. Six like football and basketball only, 3 like basketball only, 5 like all the three games and 14 did **not** like any of the three games.
 - (i) Illustrate this information on a Venn diagram.
 - (ii) Find the number of students who like:
 - (α) football and cricket only;
 - (β) exactly one of the games.
 - (b) If (3-a), 6, (7-5a) are consecutive terms of a Geometric Progression (G.P) with common ratio r > 0, find the values of a.
- Two passenger trains, A and B, 450 km apart, start to move towards each other at the same time and meet after 2 hours. If train B, travels $\frac{8}{7}$ as fast as train A. Find the speed of each train.
 - (b) A solid cube of side 8 cm was melted to form a solid circular cone. The base radius of the cone is 4 cm. Calculate, correct to one decimal place, the height of the cone. [Take $\pi = \frac{22}{7}$].

NOT DRAWN TO SCALE

- (a) The diagram shows a circle ABCD with centre E. Quadrilateral EADC is a rhombus, $\angle BAE = \angle ECB = n$ and $\angle ABC = m$. Find:
 - (i) m;
 - (ii) n.
- (b) Find the quadratic equation whose roots are $\frac{3}{4}$ and -4.
- 13. (a) The fourth term of an Arithmetic Progression (A.P) is one less than twice the second term. If the sixth term is 7, find the first term.
 - (b) A clerk spends $\frac{1}{5}$, $\frac{1}{3}$ and $\frac{1}{8}$ of his annual salary on rent, transport, and entertainment respectively. If after all these expenses he had GH¢ 4,100.00 left, find how much he earns per annum.
 - (c) Given that $f: x \to 2x^2 8x + 5$, $g: x \to x - 2$;

Find:

- (i) f(-3);
- (ii) the values of x such that f(x) = g(x).

END OF PAPER