Answer all the questions in this section. All questions carry equal marks.

- 1. Akua's initial salary is GH¢ 4,000.00 a year and that of Boateng is GH¢ 1,000.00 a year. If they started work the same day and Akua has an annual increment of GH¢ 80.00 while that of Boateng is GH¢ 200.00, when will Boateng receive more than Akua?
- 2. How many odd numbers of 4 or 5 digits can be formed from the digits 0, 1, 2, 3, 4 without repetition?
- 3. Find, from first principles, the derivative of $3x^2 - x$.
- Find the range of values of x for which $2x^2 + x 15 \le 0$. 4. (a)
 - (b) A binary operation Δ is defined on a set of real numbers, **R** by $p \Delta q = 2(p-q) - \left(\frac{1}{p} + \frac{1}{q}\right)$ where $p, q \in \mathbb{R}$. Evaluate $\frac{1}{2} \Delta \left(\frac{-1}{4}\right)$.
- The probability that a contractor will get a plumbing contract is $\frac{2}{3}$ and the probability that he will not 5. get an electrical contract is $\frac{5}{9}$. Calculate the probability that he will get at least one contract.
- The table shows the distribution of the masses of 50 junior weight-lifters. 6.

Mass (kg)	41-50	51-60	61-70	71-80	81-90	91-100		= PI
Frequency	5	9	20	5	3	8	1 ×100	- P
							mal places, the mea	Y

- A particle of mass 2 kg is placed on a rough plane which is inclined at 30° to the horizontal. A force 7. of 20 N acts on the particle up the plane. If the particle is just about to move up the plane, find the value of μ , the coefficient of friction. [Take $g = 10 \text{ m s}^{-2}$]
- The position vectors of points A, B, C and D with respect to the origin are (-2i 4j), (5i + 3j), 8. (8i - 2j) and (xi + yj) respectively. If ABCD is a parallelogram, find the position vector of D.

SECTION B [52 marks]

Answer four questions only from this section with at least one question from each part.

All questions carry equal marks.

PART I PURE MATHEMATICS

Without using Mathematical tables or calculator, find, leaving the answer in surd form, the value of sin 15°

(b) Express
$$\frac{4x-1}{3x^2+19x-14}$$
 in partial fractions.

10. (a) If
$$h(x) = 3x^2 - 7x + 2$$
 is expressed as $h(x) = P(x - Q)^2 + R$, where P , Q and R are real numbers, find the value of:

(i) P

(ii) (Q+R).

- (b) Calculate the area of the finite region bounded by the curve $y = x^2 3$ and the line y = 1.
- 11. Two linear transactions, P and Q in the 0xy plane, are defined by $P: (x, y) \rightarrow (x + 2y, -x + y)$ $Q: (x, y) \rightarrow (2x + 3y, x + 2y)$.
 - (a) Write down the matrices of P and Q.
 - (b) Given that $R(2P+Q) 4P^2 = 2I$, where I is the 2 x 2 unit matrix, find the matrix R.

PART II STATISTICS AND PROBABILITY

- 12. A fair coin is tossed 6 times. Calculate the probability of obtaining at:
 - (a) least one tail;
 - (b) least one head and one tail;
 - (c) most two tails.
- 13. The table shows the marks scored by 285 students in a test.

Marks	66-70	71-75	76-80	81-85	86–90	91-95	96-100
Number of students	9	42	69	66	81	15	3

- (a) Draw a cumulative frequency curve for the distribution.
- (b) Using the curve in (a), calculate the probability that a student selected at random scored a mark between the median and 80th percentile.

VECTORS AND MECHANICS

- 14. (a) If the velocity, \mathbf{v} , of a particle is given by $\mathbf{v} = 3t^2 + 2t$, find the distance travelled in the fourth second.
 - Three houses X, Y and Z are situated along a straight horizontal road. The distance between X and Y is 50 m and that of Y and Z is 136 m. A bus moving along the road with a constant acceleration p m s⁻² passes X with velocity q m s⁻¹. The bus passes Y 2 seconds after passing X and passes Z 4 seconds after passing Y. Find the value of:
 - (i) p:
 - (ii) q.
- 15. (a) Two objects X and Y of masses 8 kg and 5 kg move towards each other in a straight line with velocities 20 m s⁻¹ and 34 m s⁻¹ respectively and collide. After collision, X is observed to have a velocity of 15 ms⁻¹ in the opposite direction. Calculate the magnitude of the velocity of Y.
 - (b) A boat on the seashore is acted upon by three forces $\mathbf{F}_1(120 \text{ N}, 180^\circ)$, $\mathbf{F}_2(50 \text{ N}, 030^\circ)$ and $\mathbf{F}_3(P \text{ N}, 315^\circ)$.
 - (i) Express each force as a column vector;
 - (ii) If the resultant force on the boat is in the direction 225°, calculate, correct to one decimal place, the value of **P**.

END OF PAPER