SECOND TERM
 WEEKLY LESSON NOTES
 WEEK 2

Week Ending: 14-04-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Number	
Class: B8		Class Size:		Sub Strand: Powers Of Natural Numbers	
Content Standard: B8.I.2.3 Demonstrate understanding and the use of the laws of indices in solving problems involving powers of natural numbers			Indicator: B8.I.2.3.4 Solve real life problems involving powers of natural numbers.		Lesson: I of 2
Performance Indicator: Learners can solve real life problems involving powers of natural numbers				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 102					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Guide learners to solve exponential equations and Solve real life problems involving powers of natural numbers I. A person has a piece of land that is 50 meters long and 30 meters wide. How many square meters is the land? Solution: The area of the land is given by the product of its length and width, so we have: Area $=50 \mathrm{~m} \times 30 \mathrm{~m}=1500 \mathrm{~m}^{2}$ Therefore, the land has an area of 1500 square meters. 2. A car travels at a speed of $60 \mathrm{~km} / \mathrm{h}$ for 3 hours. How far does the car travel? Solution: The distance travelled by the car is given by the product of its speed and time, so we have: Distance $=$ Speed \times Time $=60 \mathrm{~km} / \mathrm{h}$ $\times 3 \mathrm{~h}=180 \mathrm{~km}$ Therefore, the car travels 180 kilometers. 3. A building has 10 floors, each with a height of 3 meters. How high is the building? Solution: The total height of the building is given by the product of the height of each floor and the number of floors, so we have: Height $=10 \times 3 \mathrm{~m}=30 \mathrm{~m}$ Therefore, the building is 30 meters high. 4. A recipe calls for 2 cups of flour, $\mathrm{I} / 2$ cup of sugar, and $\mathrm{I} / 4$ cup of butter. If you want to make twice the recipe, how much flour do you need? Solution: If we want to make twice the recipe, we need to double the amount of each ingredient. So we have: Flour $=2$ cups $\times 2=4$ cups Sugar $=1 / 2$ cup $\times 2=1$ cup Butter $=1 / 4 \operatorname{cup} \times 2=1 / 2$ cup Therefore, we need 4 cups of flour to make twice the recipe.				Counters, bundle and loose straws base ten cut square, Bundle of sticks

	5. A container of juice contains I liter of juice. If we pour I/4 of the juice into a glass, how much juice is left in the container? Solution: If we pour I/4 of the juice into a glass, we are left with $3 / 4$ of the juice in the container. So we have: Juice left in container $=\mathrm{I} \mathrm{L} \mathrm{L}$ $\times 3 / 4=0.75 \mathrm{~L}$ Therefore, there is 0.75 liters of juice left in the container Assessment Guide learners to solve real-life problems on populations. While studying her family's history, Saratu discovers records of ancestors I2 generations back. She wonders how many ancestors she has had in the past I2 generations. She starts to make a diagram to help her figure this out. The diagram soon becomes very complex Through illustrations, make a table and a graph showing the number of ancestors in each of the I2 generations. ii. Write an equation for the number of ancestors in a given generation n.	
	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.	
PHASE 3: REFLECTION		

Week Ending: 14-04-2023		DAY:		t: Mathematics	
Duration: 60MINS				Strand: Algebra	
Class: B8		Class Size:	Sub Strand: The Gradient Of A Line		
Content Standard: B8.2.I.I Demonstrate the ability to draw table of values for a linear relation, graph the relation in a number plane, determine the gradient of the line and use it to write equation of a line of the form $y=m x+c$.			Indicator: B8.2.I.I.I Calculate the gradient of a line and use it to write equation of a line of the form $y=m x+c$.		(exson:
Performance Indicator: Learners can calculate the gradient of a line and use it to write equation of a line of the form $y=m x+c$				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. II2					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Explain the concept of gradient using real life examples and to discover the practical meaning of gradient. The gradient is the measure of how steep the hill the rider is climbing is. The gradient is the slope (or steepness) of the roofing of the building. Determine the formula for calculating the gradient of a line. The formula for calculating the gradient of a straight. $\frac{\Delta y}{\Delta x}=\frac{y 2-y 1}{x 2-x 1}$ Determine the gradient when given two coordinates. Find the gradient of a line which passes through the point; i. $A(I, I)$ and $B(7,2)$ ii. $P(-2,4)$ and $Q(3,5)$ iii. C $(3,-2)$ and $D(-3$, 4) Determine the gradient of a straight line when its equation is given. Find the gradient from the equation of the straight line below. I. $y=5 x+13$				Counters, bundle and loose straws base ten cut square, Bundle of sticks

2. $2 x-8 y+3=0$ 3. $y=-3 x+12$ Determine the gradient from a graph. From the graph, the coordinates are $\mathrm{A}(-8,-2), \mathrm{B}(2,3)$. $m=\frac{-2-3}{-8-2}=\frac{-5}{-10}=\frac{1}{2}$ The gradient of the line is $\frac{1}{2}$ Determine the slope-intercept form of the equation of a straight line Hint: The equation of a straight line in slope-intercept form is $y=$ $\mathrm{mx}+\mathrm{c}$. Find the equation of a line with slope 2 and y-intercept -3 . Hence find the value of y when x is 4 . Find the equation of a line in slope-intercept form having y-intercept $\frac{7}{2}$ and slope $-\frac{5}{2}$ Find the equation of a line with slope $\frac{1}{2}$ and y-intercept 4 E.g. 7 Determine the point-slope form of the equation of a straight line Hint: The point-slope form of the equation of a straight line is $y-y_{1}=m\left(x-x_{1}\right)$ Find the equation of a line with slope $\frac{2}{3}$ that passess through the point (3, -I) Find the equation of a line that passes through the point $(3,-7)$ and has the slope $m=\frac{5}{4}$ Find the equation of a line which passes through the points $(5,4)$ and (-10, 2).	

	Write the equation $5 x+4 y-3=0$ in the form $y=m x+c$. Hence state the gradient and the intercept.	
PHASE 3:	Use peer discussion and effective questioning to find out from REFLECTION learners what they have learnt during the lesson.	
	Take feedback from learners and summarize the lesson.	

