SECOND TERM
 WEEKLY LESSON NOTES
 WEEK 5

Week Ending: 05-05-2023		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Addition, Subtraction Of Algebraic Expressions	
Content Standard: B8.2.I.I Demonstrate the ability to draw table of values for a linear relation		Indicator: B8.2.2.I. 2 Perform addition, subtraction, multiplication and division of algebraic expressions including fractions		Lesson: I of 2
Performance Indicator: Learners can perform addition, subtraction, multiplication and division of algebraic expressions including fractions			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 115-116				
Phase/DurationPHASE I:STARTER	Learners Activities Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			Resources
PHASE 2: NEW LEARNING	Guide learner division of alge To use the PE - Simplify any - Evaluate any - Perform - Perform Write an exam Simplify $10 x^{2}$ Solution To simplify th PEMDAS strat Simplify any ex $(6 x-4 x)=2 x$ $(5 x-2 x)^{2}=(3 x)^{2}$ Now the expr $10 x^{2}+2 x-9 x$ $10 x^{2}-9 x^{2}+2 x$ $=x^{2}+2 x$. Therefore, the Example 2: so $=(2 y)^{2}-2(2 y)$	s to solve addition, subtractio ebraic expression using the PED MDAS strategy, follow these ny expressions inside parenth ny exponents next. multiplication and division, from ddition and subtraction, from mple on the board and task le $+(6 x-4 x)-(5 x-2 x)^{2}$ expression $10 x^{2}+(6 x-4 x)-$ egy, we follow the order of xpressions inside parentheses $3 x)^{2}=9 x^{2}$ ession becomes: x^{2} simplified expression is $x^{\wedge} 2$ lve $(7 y-5 y)^{2}-2(10 y-8 y)+4 y$ $+4 y$	multiplication and MAS strategy. eps: first. left to right. ft to right. ners to work in pairs. $(5 x-2 x)^{2}$ using the erations as follows: st: $2 x$.	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	$=\frac{\left(2 x^{2}+2 x\right)}{\left(x^{2}-4 x\right)}$ We can simplify this by factoring out a $2 x$ from the numerator and $a x$ from the denominator: $=\frac{2 x(x+2)}{x(x-4)}=\frac{2(x+2)}{x(x-4)}$ Example 2: Divide $\frac{\left(3 x^{2}-9 x\right)}{\left(x^{2}-4\right)} \div \frac{\left(2 x^{2}+8 x\right)}{\left(x^{2}-2 x\right)}$ Solution: First, simplify each fraction. We can factor out a $3 x$ from the numerator of the first fraction and factor out a $2 x$ from the numerator of the second fraction: $\begin{aligned} & \frac{\left(3 x^{2}-9 x\right)}{\left(x^{2}-4\right)}=\frac{3 x(x-3)}{(x-2)(x+2)} \\ & \frac{\left(2 x^{2}+8 x\right)}{\left(x^{2}-2 x\right)}=\frac{2 x(x+4)}{x(x-2)} \end{aligned}$ Now we can invert the second fraction and multiply it by the first: $\frac{\left(3 x^{2}-9 x\right)}{\left(x^{2}-4\right)} x \frac{x(x-2)}{2 x(x+4)}$ Multiplying the numerators gives us: $3 x(x-3)(x-2)$ Multiplying the denominators gives us: $2 x(x+4)(x-2)(x+2)$ So the final answer is: $\frac{3 x(x-3)(x-2)}{2 x(x+4)(x-2)(x+2)}$ We can simplify this by cancelling out the $(x-2)$ factor in the numerator and denominator: $\frac{3 x(x-3)}{2 x(x+4)(x+2)}$ Assessment I) $\frac{a}{7} \times \frac{b}{8}$ 2) $\frac{3 x-3}{4 x-4}$ 3) $\frac{a}{a b} \div \frac{1}{a}$ 4) $\frac{{ }_{7}^{a b}}{8 r} \times \frac{{ }_{2}^{a}}{5 r}$	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending: 05-05-2023		DAY:	Subject: Mathemati	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Algebraic Expressions	
Content Standard: B8.2.I.I Demonstrate the ability to draw table of values for a linear relation		Indicator: B8.2.2.I. 3 Substitute values to evaluate algebraic expressions including fractions and use these to solve problems.		Lesson: I of 2
Performance Indicator: Learners can substitute values to evaluate algebraic expressions including fractions and use these to solve problems			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. II9				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			
PHASE 2: NEW LEARNING	Guide learners to substitute values to evaluate algebraic expressions including fractions and use these to solve problems. Take learners through the steps in substituting values into algebraic expressions. To substitute values to evaluate algebraic expressions including fractions: I. Identify the variables in the expression that you want to substitute values for. 2. Replace each variable with the corresponding value. 3. Simplify the expression by performing any necessary arithmetic operations, such as addition, subtraction, multiplication, and division. Example, Evaluate the expression $(3 x-2) /(x+1)$ when $x=4$. I. The variable in this expression is x. 2. We replace x with the value 4 : $(3 x-2) /(x+1)=(3(4)-2) /(4+1)$ 3. Simplify the expression by performing the arithmetic operations: $(3(4)-2) /(4+1)=(10 / 5)=2$ Therefore, when $x=4$, the value of the expression $(3 x-2) /(x+1)$ is 2 . Example 2: Evaluate the expression $\frac{(2 x+3)}{(x-4)}$ when $x=5$. I. Identify the variable in the expression: x. 2. Replace x with the value 5 :			Counters, bundle and loose straws base ten cut square, Bundle of sticks

