SECOND TERM WEEKLY LESSON NOTES WEEK 6

Week Ending: 12-05-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size:		Sub Strand: Alternate And Corresponding Angles	
Content Standard: B8.3.I.I Demonstrate understanding and use of the relationship between parallel lines and alternate and corresponding angles and use the sum of angles in a triangle to deduce the angle sum in any polygon			Indicator: B8.3.I.I.I Draw and determine the values of alternate and corresponding angles.		Lesson: I of 2
Performance Indicator: Learners can draw and determine the values of alternate and corresponding angles				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 123					
Phase/Duration	Learners Activities Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				Resources
PHASE I: STARTER					
PHASE 2: NEW LEARNING	Revise with learners on how angles are formed. An angle is a measure of the space between two intersecting lines or surfaces, often measured in degrees or radians. It is formed when two lines or surfaces meet at a common point, called the vertex of the angle. Revise with learners on the types of angles. I. Acute Angle: An acute angle is an angle whose measure is between 0 and 90 degrees. 2. Right Angle: A right angle is an angle whose measure is exactly 90 degrees. It is often represented by a small square placed at the vertex of the angle. 3. Obtuse Angle: An obtuse angle is an angle whose measure is between 90 and 180 degrees. 4. Straight Angle: A straight angle is an angle whose measure is exactly 180 degrees. It is essentially a straight line. 5. Reflex Angle: A reflex angle is an angle whose measure is between 180 and 360 degrees. 6. Complementary Angles: Two angles are complementary if their measures add up to 90 degrees. 7. Supplementary Angles: Two angles are supplementary if their measures add up to 180 degrees. 8. Congruent Angles: Two angles are congruent if they have the same measure.				Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	
PHASE 3: REFLECTION		

Week Ending: 12-05-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size:		Sub Strand: Sum Of Interior Angles	
Content Standard: B8.3.I.I Demonstrate understanding and use of the relationship between parallel lines and alternate and corresponding angles and use the sum of angles in a triangle to deduce the angle sum in any polygon			Indicator: B8.3.I.I. 2 Determine the values of angles in a triangle using knowledge of the sum of interior angles in a triangle and other properties.		Lesson: 2 of 2
Performance Indicator: Learners can determine the values of angles in a triangle using knowledge of the sum of interior angles in a triangle and other properties.				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 124					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Revise Guide triangle. Learners in a poly hexagon To derive start by triangles number the num For exam below:	arners on polygons s to calculate the va airs deduce the form and determine the va formula for the sum of g the polygon into tria awing all the possible ngles that result from sides in the polygon. pentagon can be divi	d the typ es of y and a for the e of an a terior ang les. Any p agonals from is division d into thr	of polygons. the angles in the m of interior angles e in a regular in a polygon, we can gon can be divided into one vertex. The always two less than triangles, as shown	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	From this diagram, we can see that the sum of the interior angles of the pentagon is equal to the sum of the interior angles of the three triangles. Each triangle has two interior angles that are shared with the other triangles and one angle that is unique to that triangle. Therefore, the sum of the interior angles of each triangle is 180 degrees, and the sum of the interior angles of the polygon is: Sum of interior angles $=$ (number of triangles) $\times 180$ degrees The number of triangles in the polygon is two less than the number of sides or vertices, so we can substitute $(n-2)$ for the number of triangles: Sum of interior angles $=(n-2) \times 180$ degrees where n is the number of sides or vertices in the polygon. Therefore, we have derived the formula for the sum of interior angles in a polygon, which is: Sum of interior angles $=(n-2) \times 180$ degrees. Learners to use the formula for finding the sum of interior angles in a polygon ($n-2$) 180 to determine the value of x in the hexagon.	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

