THIRD TERM

WEEKLY LESSON NOTES WEEK 10

Week Ending: $01-09-2023$		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size		Sub Strand: Position \& Transformation	
Content Standard: B8.3.3.I Perform a single transformation (i.e. rotation) on a 2D shape using graph paper.			Indicator: B8.3.3.I.I Understand rotation and identify real-life situations involving rotation.		Lesson: I of 2
Performance Indicator: Learners can understand rotation and identify real-life situations involving rotation.				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. I50					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Start by Engage rotate a Define point. Using a directio Introdu Use the movem Discuss \square - - Ask lear example Use inter rotating	ning a bot ers with a d us every ion in mat , explain e terms "c eboard to yday scen ing a door ing a bicyc ing a jar lid rotation of to identify lockwise ve digital	top o question: day?" matica w the ckwise draw ex ios wh nob tire ceiling the nat anti-cl ols or	clock. you noticed how things relating it to a central ove in a particular ti-clockwise". of both rotational ion is evident: e rotation for each show different items	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Let learners change the direction of rotation to see the difference between clockwise and anti-clockwise movements. Discuss why understanding the direction of rotation might be important in certain situations. Assessment Divide learners into small groups. Task them with identifying 3-5 objects or scenarios in the classroom or their memory where rotation is essential and determining the nature of that rotation (clockwise or anti- clockwise). Allow learners a few minutes to discuss and list down their observations.	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.
PHASE 3: REFLECTION		

Week Ending: $01-09-2023$		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size:		Sub Strand: Position \& Transformation	
Content Standard: B8.3.3.I Perform a single transformation (i.e. rotation) on a 2D shape using graph paper.			Indicator: B8.3.3.I. 2 Draw rotation image in a coordinate plane and determine the angle of rotation.		Lesson: I of 2
Performance Indicator: Learners can draw rotation image in a coordinate plane and determine the angle of rotation.				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 152					
Phase/Duration	Learners Activities Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				Resources
PHASE I: STARTER					
PHASE 2: NEW LEARNING	Give a br plane. Explain th Show how protracto Discuss th 270°. Highlight rotations. Introduce Use the w Distribute Plot a sim the white Ask learn	review of wh e concept o mportance he angle of r most comm difference e rules for r lockwise: (x nti-clockwis (x, y) becom clockwise: anti-clockw teboard to d aph paper a shape (e.g., ard or proje to draw the	at rotation m rotating a sh a center of tation is me n angles of r etween clock tating points y) becomes : (x, y) beco es (-x, $-y$) (x, y) becomes e: (x, y) beco monstrate a d protractor a triangle) on tor. same shape	ans in math. e on a coordinate tation. ured using a ation: $90^{\circ}, 180^{\circ}$, and ise and anti-clockwise n a coordinate plane: $-x)$ ($-y, x$) (-y, x) es $(y,-x)$ w examples. to each student. he coordinate plane on their graph paper.	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Guide learners in rotating the shape 90° clockwise, plotting the new points based on the rotation rules. Let learners verify the rotation using protractors. Repeat with other angles and directions. Assessment Plot the point $A(2,3)$ on graph paper. Now, rotate it 90° clockwise about the origin. Plot the new point and label it A^{\prime}. What are the coordinates of A^{\prime} ? Using a protractor and graph paper, plot the point $\mathrm{B}(4,2)$. Rotate this point 180° about the origin. Mark and label the new position B^{\prime}. What are the coordinates of B^{\prime} ? Plot a triangle with vertices at $\mathrm{C}(\mathrm{I}, \mathrm{I}), \mathrm{D}(4, \mathrm{I})$, and $\mathrm{E}(2,5)$. Rotate the triangle 270° anti-clockwise about the origin. Draw the new triangle and label its vertices $\mathrm{C}^{\prime}, \mathrm{D}^{\prime}$, and E^{\prime}. What are their coordinates?	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending: 01-09-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size:		Sub Strand: Position \& Transformation	
Content Standard: B8.3.3.I Perform a single transformation (i.e. rotation) on a 2D shape using graph paper			Indicator: B8.3.3.I. 3 Investigate the concept of congruent shapes.		Lesson: I of 2
Performance Indicator: Learners can investigate the concept of congruent shapes.				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 152					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Show how protracto Discuss th 270°. Highlight rotations Introduce - 90 - 90° - 180° - 27 - 27 Use the Distribut Plot a sim the white Ask learn Guide lea new poin Let learners Repeat w Divide lea Assign ea	he angle of r most comm difference e rules for r lockwise: (x nti-clockwis (x, y) becom clockwise: anti-clockw teboard to raph paper a shape (e.g., ard or proje to draw the ers in rotatin based on the verify the ro other angles ers into pair group a diffe	tation is m n angles of etween clo tating poin y) become (x, y) bec es (-x, $-y$) (x, y) becom e: (x, y) be monstrate d protracto a triangle) tor. same shape the shape rotation rul tation using and directio or small gr ent shape	ured using a ation: $90^{\circ}, 180^{\circ}$, and ise and anti-clockwise n a coordinate plane: -x) ($-y, x$) $(-y, x)$ es $(y,-x)$ w examples. to each student. he coordinate plane on their graph paper. clockwise, plotting the tractors. s. angle of rotation.	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Allow groups a few minutes to draw the original and rotated shapes. Assessment On graph paper, draw two seemingly congruent trapezoids, with one trapezoid's orientation different from the other. By rotating one of them, prove if they are congruent or not. Plot a square with vertices at $\mathrm{F}(\mathrm{I}, \mathrm{I}), \mathrm{G}(3, \mathrm{I}), \mathrm{H}(3,3)$, and $\mathrm{I}(\mathrm{I}, 3) . \mathrm{Now}$, plot another square with vertices at J(-I,-I), K(-I,-3), L(-3,-3), and M(-3,-I). By rotating one of the squares, determine if the two squares are congruent.	
Draw a rhombus on the coordinate plane. Next to it, draw another rhombus that looks congruent but is oriented differently. Using the rules of rotation, demonstrate (by rotating and marking the new coordinates) whether or not the two shapes are congruent.		
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.	

