THIRD TERM

WEEKLY LESSON NOTES WEEK 7

Week Ending: II-08-2023 DAY:			Subject: Mathematics	
Duration: 60MINS			Strand: Geometry \& Measurement	
Class: B8		Class Size:	Sub Strand: Pythagoras Theorem	
Content Standard: B.8.3.2.I Apply the Pythagoras theorem, the primary trigonometric ratios and the formulas for determining the area of a circle to solve real problems		Indicator: B8.3.2.I. 2 Establish the relationship between the hypotenuse ' c ' and the two other sides ' a ' and ' b ' of a right-angled triangle.		Lesson: 2 of 2
Performance Indicator: Learners can establish the relationship between the hypotenuse ' c ' and the two other sides ' a ' and ' b ' of a right-angled triangle			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 143				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			
PHASE 2: NEW LEARNING	Ask learners if they kn have heard of Pythago Explain that a right-an degrees, and Pythagor concept used to find th triangles. Present the Pythagora Explain that in a righthypotenuse (the side represent the lengths Emphasize that this th and allows us to calcu lengths of the other two. Provide each learners draw right-angled trian Instruct learners to m record the values. Guide the learners thr the hypotenuse 'c' usin	w what a right-angled as Theorem. led triangle has one an Theorem is a fundam e relationship between Theorem formula: c^{2} ngled triangle, 'c' repre pposite the right angle), of the other two sides. orem applies only to r ate the length of any sid o. or group with a right-a gles on the board. asure the lengths of ' a ' ough the process of cal gythagoras Theorem	riangle is and if they e measuring 90 ntal mathematical the sides of such $a^{2}+b^{2}$ ents the length of the and ' a ' and ' b ' ht-angled triangles if we know the gled triangle cutout or and 'b' using rulers and ulating the length of	Geometric shapes or cutouts of rightangled triangles Rulers

	Have learners share their findings with the class and compare results. Discuss some practical applications of Pythagoras Theorem in real life, such as measuring distances, calculating diagonals in rectangular fields, or determining cable lengths in electronics. Let learners construct squares on the three sides of a right-angled triangle in a square grid and compare the area of the square on the hypotenuse to the squares on the other two sides to state the relationship between the hypotenuse ' c ' and the two other sides ' a ' and ' b ' of a right-angled triangle i.e. $a^{2}+b^{2}=c^{2}$ Learners in groups use a pair of compasses and ruler, construct squares on the three sides of a right-angled triangle and measure the area of the square on the hypotenuse and compare to the squares on the other two sides to state the relationship between the hypotenuse ' c ' and the two other sides ' a ' and ' b ' of a right-angled triangle i.e. $a^{2}+b^{2}=c^{2}$ Encourage learners to use Pythagoras Theorem to find the unknown side lengths. Review the solutions as a class and address any questions or challenges that learners may have encountered. Assessment Solve problems involving the Pythagoras theorem. i. Determine the missing side marked h in the figure. ii. Find the height $A B$.	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending: I I-08-2023		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Geometry \& Measurement	
Class: B8		Class Size:	Sub Strand: Pythagoras Theorem	
Content Standard: B.8.3.2.I Apply the Pythagoras theorem, the primary trigonometric ratios and the formulas for determining the area of a circle to solve real problems		Indicator: B8.3.2.I. 3 Use the Pythagorean theorem to solve problems on right-angled triangle		Lesson: 2 of 2
Performance Indicator: Learners can establish the relationship between the hypotenuse ' c ' and the two other sides ' a ' and ' b ' of a right-angled triangle			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 143				
Phase/Duration PHASE I: STARTER	Learners Activities Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			Resources
PHASE 2: NEW LEARNING	Draw a right-angled tria and c (with c being th angle). Explain the Pythagore Discuss how this theo triangles, where one a Provide learners with of using the Pythagore guiding the learners th Example I: A right-angled triangle measuring 12 cm . Find Solution: Let's label the sides of Side $a=5 \mathrm{~cm}$ Side $b=12 \mathrm{~cm}$ Side c (hypotenuse) $=$ Using the Pythagorean $\begin{aligned} & a^{2}+b^{2}=c^{2} \\ & 5^{2}+12^{2}=c^{2} \\ & 25+144=c^{2} \\ & 169=c^{2} \end{aligned}$ Taking the square roo $c=\sqrt{ } 169$	angle on the board an hypotenuse, the side theorem: $a^{2}+b^{2}=$ em can only be applie gle measures 90 degr problems to solve. Dem an theorem to solve a rough the calculation. has one side measurin the length of the hypo the triangle as follows: theorem: of both sides:	label its sides as a, b, posite the right to right-angled s. onstrate the process oblem step-by-step, 5 cm and another side nuse.	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Briefly discuss real-life scenarios where the Pythagorean theorem is applied, such as measuring the distance between two points in a grid, calculating the diagonal of a rectangular room, or finding the distance traveled by a hiker on a zigzag path.	
	Assessment I. A right-angled triangle has one side measuring 6 units and another side measuring 8 units. Find the length of the hypotenuse.	2. A square garden has sides measuring 10 meters. A diagonal path cuts across the garden. Find the length of the diagonal path.
3. An isosceles triangle has equal sides, 6 cm long and a base of 4 cm		
long. Find the altitude of the triangle.		

Week Ending: II-08-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size:		Sub Strand: Pythagoras Theorem	
Content Standard: B8.3.I. 2 Demonstrate the ability to perform geometric constructions of the angles $\left(75^{\circ}, 105^{\circ}, 60^{\circ}, 135^{\circ}\right.$ and $\left.150^{\circ}\right)$, and construct triangles and find locus of points under given conditions			Indicator: B8.3.2.I. 3 Use the Pythagorean theorem to solve problems on right angled triangle.		Lesson: I of 2
Performance Indicator: Learners can use the Pythagorean theorem to solve problems on right angled triangle.				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 127-132					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Gide learners to use a pair of compasses and a ruler to construct an equilateral triangle when a side is given and justify why it is an equilateral triangle - Draw a straight line segment to serve as the base of your triangle. Label the endpoints as points A and B. - Use a ruler to measure the length of the given side. Let's say the length is "a". Mark a point C on the line segment $A B$, at a distance of "a" from point A. - With a compass, set the width to the length "a". Place the compass tip on point C and draw an arc that intersects the line segment $A B$. Label the intersection points as D and E. - Without changing the compass width, place the compass tip on point D and draw another arc that intersects the arc drawn in the previous step. Label the intersection point as F. - Draw a straight line connecting point C and point F. - Draw a straight line connecting point F and point B. Guide learners to use a pair of compasses and a ruler to construct an equilateral triangle - Draw a straight line segment to serve as the base of your triangle. Label the endpoints as points A and B. - Use a ruler to measure and mark a second point, C, on the same line but at a different distance from point A than point B. This will determine the length of one side of the triangle.				Counters, bundle and loose straws base ten cut square, Bundle of sticks

