THIRD TERM

WEEKLY LESSON NOTES WEEK 8

Week Ending: 18-08-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size:		Sub Strand: Pythagoras Theorem	
Content Standard: B.8.3.2.I Apply the Pythagoras theorem, the primary trigonometric ratios and the formulas for determining the area of a circle to solve real problems			Indicator: B8.3.2.I. 4 Use the Pythagoras theorem to calculate the area of a triangle in real life problems		Lesson: 2 of 2
Performance Indicator: Learners can apply the Pythagorean Theorem to calculate the area of a triangle in real-life problem-solving situations.				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 145					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Begin the lesson by engaging the learners with a question: "Have you ever wondered how to calculate the length of a side of a right-angled triangle when you know the lengths of the other two sides?" Allow learners to share their ideas and experiences, and lead the discussion towards the need for a theorem to solve such problems. Introduce the Pythagorean Theorem as a fundamental concept in geometry, explaining that it allows us to find the length of the missing side in a right-angled triangle.				
PHASE 2: NEW LEARNING	Define and pe Write 'a' and hypote Explain to a rig Demon to calc Review height. Explain area of Derive Pythago	-angled triangle and its cular. chagorean Theorem on the lengths of the legs, eaning of each term in led triangle. a few examples of app he length of a side in difis oncept of the area of a he Pythagorean Theor t-angled triangle. rmula for the area of a Theorem: Area $=1 / 2 \times$	three the bo and 'c' he the ying th erent riangl n can right-a $\mathrm{a} \times \mathrm{b}$.	s: hypotenuse, base, $a^{2}+b^{2}=c^{2}$, where he length of the m and how it applies ythagorean Theorem t-angled triangles. $\text { rea }=1 / 2 \times \text { base } \times$ be used to find the d triangle using the	Counters, bundle and loose straws base ten cut square, Bundle of sticks

Week Ending: I8-08-2023			Subject: Mathematics	
Duration: 60MINS			Strand: Geometry \& Measurement	
Class: B8		Class Size:	Sub Strand: Pythagoras Theorem	
Content Standard: B.8.3.2.I Apply the Pythagoras theorem, the primary trigonometric ratios and the formulas for determining the area of a circle to solve real problems		Indicator: B8.3.2.I. 5 Establish the relationship between the basic trigonometric ratios and solve problems involving right-angled triangles		Lesson: 2 of 2
Performance Indicator: Learners can; - Establish the relationship between trigonometric ratios and the sides of a right-angled triangle. - Apply trigonometric ratios to solve problems involving right-angled triangles.			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 145				
Phase/Duration PHASE I: STARTER	Learners Activities			Resources
	Revise with learners on the previous lesson. Discuss briefly that trigonometry is the study of relationships between angles and sides in triangles. Explain that trigonometric ratios are used to define these relationships and help solve problems involving right-angled triangles. Share performance indicators with learners and introduce the lesson.			
PHASE 2: NEW LEARNING	Introduce the three pr (cos), and tangent (tan). Write the ratios on th - Sine (sin) = O - Cosine (cos) - Tangent (tan) Emphasize that these Illustrate the meaning examples. Draw a right-angled tri opposite, adjacent, and Explain how each trigo triangle using the defin Highlight that the ratio triangle, as long as the	imary trigonometric ratio board and explain their posite/Hypotenuse Adjacent/Hypotenuse = Opposite/Adjacent atios are specific to right- f each ratio using diagram angle on the board and la hypotenuse. nometric ratio relates to tions from Step 2. s remain constant for any corresponding sides are	sine (sin), cosine finitions: gled triangles. on the board and its sides: e sides of the milar right-angled d.	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	I. In a right-angled triangle, the length of the hypotenuse is 10 m , and the length of the opposite side is 6 m . find the measure of angle C and the length of the adjacent side. 2. In a right-angled triangle, the measure of angle A is 45°, and the length of the adjacent side is 12 cm . Find the lengths of the hypotenuse and the opposite side. 3. A hunter, on top of a tower, sees a fire at an angle of depression of 30°. The height of the tower is 18 m . What is the distance between the fire and the hunter? Round off your answer to 2 significant figures.	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

