TERM I SCHEME OF LEARNING

WEEKS	STRAND	SUB STRAND	INDICATORS	RESOURCES
I	Number	Read And Write In Number Quantities Over I,000,000,000 Skip Counting	B8.I.I.I.I B8.I.I.I. 2	Counters, bundle and loose straws base ten cut square, Bundle of sticks
2	Number	Compare \& Order Whole Numbers Standard Form	B8.I.I.I. 3 B8.I.I.I. 4	
3	Number	Significant Figures	B8.I.I.I. 5	Counters, bundle and loose straws base ten cut square, Bundle of sticks
4	Number	Word Problems On Place Values Sets	B8.I.I.I. 6 B8.I.I.2.I	
5	Number	Union \& Intersection Of Sets Decimals	$\begin{aligned} & \text { B8.I.I.2.2. } \\ & \text { B8.I.2.I.I } \end{aligned}$	Counters, bundle and loose straws base ten cut square, Bundle of sticks
6	Number	Mental Mathematics Strategies	B8.I.2.1.2-3	
7	Number	Addition \& Subtraction Multiply Or Divide	$\begin{aligned} & \hline \text { B8.I.2.2.I } \\ & \text { B8.I.2.2.2 } \end{aligned}$	Counters, bundle and loose straws base ten cut square, Bundle of sticks
8	Number	Story Problems Involving Decimals Indices	$\begin{aligned} & \text { B8.I.2.2.3 } \\ & \text { B8.I.2.3.I } \end{aligned}$	
9	Number	Indices Exponential Equations	$\begin{aligned} & \text { B8.I.2.3.2 } \\ & \text { B8.I.2.3.3 } \end{aligned}$	Counters, bundle and loose straws base ten cut square, Bundle of sticks
10	Algebra	Powers Of Natural Numbers The Gradient Of A Line	$\begin{aligned} & \hline \text { B8.I.2.3.4 } \\ & \text { B8.2.I.I.I } \end{aligned}$	
11	Algebra	The Gradient Of A Line	B8.2.I.I.I	
12	Geometry \& Measurement	Alternate And Corresponding Angles The Sum Of Interior Angles	B8.3.I.I.I B8.3.I.I. 2	Charts

FIRST TERM
 WEEKLY LESSON NOTES
 WEEK I

Week Ending:		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Read And Write In Number Quantities	
Content Standard: B8.I.I.I Demonstrate understanding and the use of place value for expressing quantities in standard form and rounding numbers and decimals to significant figures and a given number of decimal places		Indicator: B8.I.I.I.2. Skip count forwards and backwards in $10,000 \mathrm{~s}, 100,000 \mathrm{~s}, 500,000 \mathrm{~s}$, etc.		Lesson: 2 of 2
Performance Indicator: Learners can skip count forwards and backwards in 10,000s, 100,000s, 500,000s			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 90				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Play: "How Many fingers up" and "How Many" fingers down? Hold up fingers on two hands. Say "How Many fingers up" and "How Many fingers down"? Learners call out the fingers they see up and the number of fingers they see down			
$\begin{aligned} & \text { PHASE 2: } \\ & \text { NEW } \\ & \text { LEARNING } \end{aligned}$	Revise counting forwar with the class. Put learners into group Learners skip count in 200000,300000,400000 The group leaders sho them. Give 1000 numeral car counting forwards in I Deduce from learners when they were count Have learners work in They skip count forwa Call out 10 learners to the gender and social inclusiv Give each of them multip I00 - I0. Each learner re 2010 Give out the 100 numera count backwards by 10s 1000 numeral cards to re	and backw of five. Give lumns in 1000 00000. identify er to learners starting on pattern or tr forwards in airs. Give th in 10 s star front of the ess. of 10000 nu s his/her num hart to learn rting from diff at the same	ards by 1000s and 10000s them 100000 number charts. 000 s starting on ors or omissions and correct in their groups. They play 200000, 400000, 500000 etc. end that they have identified I0000's. m 10000 numeral charts. ing from any number. ass. Make sure you cater for meral cards. They hold from ber. 10090807060504030 rs in their groups. They skip erent numbers. Give them the bove.	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Give out I000 numeral charts to learners, they skip count backwards by I00s from any number. Count backwards in I00,500s up to the fifth number. (I) I,800,000, I699500, I599000, ... Assessment Give out I0000 numeral charts to learners. They skip count backwards from these numbers I) 520 2) 802 3) 905 Give them I0000 numeral cards. They skip count forwards by IO000's starting from any number.	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.	

FIRST TERM
WEEKLY LESSON NOTES
WEEK 2

Week Ending:		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Compare \& Order Whole Numbers	
Content Standard: B8.I.I.I Demonstrate understanding and the use of place value for expressing quantities in standard form and rounding numbers.		Indicator: B8.I.I.I.3. Compare and order whole numbers using ">, <, and ="		Lesson: I of I
Performance Indicator: Learners can compare and order whole numbers using ">, <, and ="			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 90				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Play: "I0 more than". Mention a number and learners add 10 to it and call out the number. E.g. I) $13 \rightarrow 23$ 2) $40 \rightarrow 50$ 3) $50 \rightarrow 60$ 4) $90 \rightarrow 100$ Share performance indicators and introduce the lesson.			
PHASE 2: NEW LEARNING	Identify numbers whic than given 8 to 9 -digit Put learners into group and let them describe 526,000. Have learners use the numbers have number 500,000 is a lot bigger So, 526,000 is a lot big than 526,000. In their groups learner numbers I) 648,000 and 230,000 answers. Put leaners into group 268,000 and 320,000 . Have learners find the numbers, 300,000 is gr 268,000.	100,000, 1500,0 ber. five. Write these relationship betwe e values to determ the hundred thou 100,000. than 126,000 , and escribe the relation 2) 136,000 and 12 five. Write these ues of each digit. i. er than 200,000 so	0 , etc. more or less numbers on the board en them. 126,000 and ine the difference. Both and columns but 126,000 is a lot smaller ship between these ,000. Justify your umbers on the board looking at the 2 320,000 is greater than	Counters, bundle and loose straws base ten cut square, Bundle of sticks

Week Ending:	DAY:	Subject: Mathematics	
Duration: 60MINS		Strand: Number	
Class: B8	Class Size:	Sub Strand: Standard Form	
Content Standard: B8.I.I.I Demonstrate understanding and the use of place value for expressing quantities in standard form and rounding numbers and decimals to significant figures and a given number of decimal places		Indicator: B8.I.I.I. 4 Express integers of any size into standard form.	Lesson: 2 of 2
Performance Indicator: Learners can express integers of any size into standard form		Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 91			
Phase/Duration	Learners Activities		Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.		Resources
PHASE 2: NEW LEARNING	Guide learners to write integers as a power of 10 : $\begin{aligned} & 1=100 \\ & 10=101 \\ & 100=10^{2} \\ & 1000=10^{3} \end{aligned}$ Guide learners to write multiples of 10 in standard form: (I) $10=1 \times 10$ (II) $100=1 \times 10^{1}$ (III) $1000=1 \times 10^{3} \mathrm{etc}$. Guide learners to write integers in standard form: (i) $26=2.6 \times 10$ (ii) $375=3.75 \times 10^{2}$ (iii) $8,765,049=8.765049 \times 10^{6}$ Assessment Write these integers in standard form I. 234 2. 3456778 3. 97864064 4. 1234787		Counters, bundle and loose straws base ten cut square, Bundle of sticks
PHASE 3: REFLECTION	Use peer discussion and effective learners what they have learnt durin Take feedback from learners and	questioning to find out from ing the lesson. summarize the lesson.	

FIRST TERM
WEEKLY LESSON NOTES
WEEK 3

Week Ending:		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Significant Figures	
Content Standard: B8.I.I.I Demonstrate understanding and the use of place value for expressing quantities in standard form and rounding numbers.		Indicator: 8.I.I.I. 5 Express integers in a given number of significant and decimal places		Lesson: I of I
Performance Indicator: Learners can express integers in a given number of significant and decimal places			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 90				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			
PHASE 2: NEW LEARNING	Revise with learners on place value of numbers. Guide learners to explain what a significant figure is. As you read a figure from left to right, the first value you come to that is not zero has the highest place value, so it is called the first significant figure (s.f.), For example, in the number 4078; 4 is the first significant figure, 0 is the second significant figure and so on... Also, in the number 0.00507; 5 is the first significant figure since it is the first non-zero figure reading from left to right. The 0 after 5 is the 2 significant figure and 7 is the 3 " significant figure. To correct a number to a stated number of significant figures - find the last significant figure you want - then look at the next significant figure (to the right) - If this figure is less than 5 leave the last significant figure you want as it is If this figure is 5 or more add I to the last significant figure you want. Guide learners to express any given integer to a given number of significant figures. (i) Express 56734 correct to two significant figures. Solution a) The $2^{\text {nd }}$ significant figure is 6 but the figure after it (i.e. the 3 rd significant figure) is 7 which is more than 5 . Therefore we add I to 6 to give 7 as the $2^{\text {nd }}$ significant figure. $56734=57000$ (to 2 significant figures) Assessment			Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Express 975.8674, correct to (i) two decimal places; (ii) three decimal places	
PHASE 3:	Use peer discussion and effective questioning to find out from REFLECTION	Tearners what they have learnt during the lesson.
	Home Work Correct each of the following numbers to 2 significant figures. a) 0.0496 b) 0.099	

Week Ending:		Subject: Mathematics	
Duration: 60MINS		Strand: Number	
Class: B8	Class Size:	Sub Strand: Standard Form	
Content Standard: B8.I.I.I Demonstrate understanding and the use of place value for expressing quantities in standard form and rounding numbers and decimals to significant figures and a given number of decimal places		Indicator: B8.I.I.I. 4 Express integers of any size into standard form.	Lesson: 2 of 2
Performance Indicator: Learners can express integers of any size into standard form		Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 91			
Phase/Duration	Learners Activities		Resources
PHASE I: STARTER	Start the lesson with a recap of the previous lesson. Allow learners to reflect on what they learnt from the previous lesson and the homework relating to significant. Learners work these examples in groups. Correct the following to; i) 4 ii) 3 iii) 2 iv) I - 17300 - 0.651234 - 782001 - 0.423568 - 20023 - 0.24780021 Share performance indicators with learners and introduce the lesson.		
PHASE 2: NEW LEARNING	Brainstorm learners for meaning of standard form. It is a way of writing down very large or very small numbers easily. Guide learners to write numbers in standard form. $\binom{\text { a number between }}{1 \text { and } 10} *\binom{\text { an integer power }}{\text { of } 10}$ Therefore $\mathrm{a} * 10 \mathrm{n}$ is in the standard form, where $\mathrm{I} \leq \mathrm{a}<10$ and n is an integer. The value of n in the standard form shows whether the number is greater than I or is a fraction. Revise with learners to write integers as a power of 10 : $\begin{aligned} & 1=10^{0} \\ & 10=10^{1} \\ & 100=10^{2} \\ & 1000=10^{3} \end{aligned}$		Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Guide learners to write multiples of 10 in standard form: (IV) $10=1 \times 10$ (V) $100=1 \times 10^{1}$ (VI) $1000=1 \times 10^{3}$ etc. Guide learners to write integers in standard form: Example I: $26=2.6 \times 10$ 2.6×10 is in standard form but 26×10 is not in standard form because 26 is not between I and 10 . Example 2: $\quad 375=3.75 \times 10^{2}$ 3.75×10^{2} is in standard form but 37.5×10^{2} is not in standard form because 37.5 is not between I and I0. Have learners practice in groups to write the following integers in standard form (i) $8,765,049$ (ii) 872 (iii) 460000 Take learners through the rules of writing numbers in standard form. If n is positive, the number is 10 or more. Example $4.6 \times 10^{6}=460000$ if n is zero, the number is between I and 10 example $5.6 \times 10^{\circ}=5.6$ if n is negative, the number is a fraction. Example: $3 \times 10^{-1}=0.3$ Assessment Write these integers in standard form 5. 234 6. 0.03456778 7. 97864064 8. 0.0001234787	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

FIRST TERM
WEEKLY LESSON NOTES
WEEK 4

Week Ending:		DAY:			Subject: Mathematics		
Duration: 60MINS					Strand: Number		
Class: B8		Class Size:			Sub Strand: Word Problems On Place Values		
Content Standard: B8.I.I.I Demonstrate understanding and the use of place value for expressing quantities in standard form and rounding numbers and decimals to significant figures and a given number of decimal places				Indicator: B8.I.I.I. 6 Create and solve word or reallife problems on place values			Lesson: I of I
Performance Indicator: Learners can solve word or real-life problems on place values					Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)		
References: Mathematics Curriculum Pg. 90							
Phase/Duration	Learners Activities					Resources	
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.						
PHASE 2: NEW LEARNING	Revise That is Explain understa Example From th How mu Solution Since Jan amount comput Jane sav Subtract GHc36. GHc75. GHc39. The ans	arners on on, Subtra basic ope st summe ernings, sh oney did J de GHc75 ney spent amount sa 30.00 32.50 62.50 Too low Нс39.00. mount sa spent. Hc39.00 GHc36.50 hecks.	the basic tion, Mul ation with Jane earn saved G ne save? 50, choos such as ed. Find 37.00 39.50 76.50 Too low ed from th GHc36.5 GHc2.50	sen d G c2.5 a r c3 to am	used in mathematics. and Division. to aid learners 50 mowing lawns. re than she spent. ble guess for the Make a table and test your guess. t earned to see if	Counters, bundle and loose straws base ten cut square, Bundle of sticks	

Week Ending:		DAY:	Subject: Mathematics		
Duration: 60MINS			Strand: Number		
Class: B8		Class Size:	Sub Strand: Sets		
Content Standard: B8.I.I. 2 Identify perfect squares, determine their square root and solve real life problems involving union and intersection of two sets		Indicator: B8.I.I.2.I. Use the concept of sets to identify perfect squares and determine the square roots.			Lesson: I of I
Performance Indicator: Learners can identify perfect squares and determine the square roots			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)		
References: Mathematics Curriculum Pg. 91					
Phase/Duration	Learners Activities			Resources	
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
$\begin{aligned} & \hline \text { PHASE 2: } \\ & \text { NEW } \\ & \text { LEARNING } \end{aligned}$	Guide learners to iden Engage learners to list set of perfect numbers In groups, learners list (I) 5 (2) 2 (3) 4 5, $10,15,20,25,30,35$ $2,4,6,8,10,12,14,16$ $4,8,12,16,20,24,28$, Guide learners on how square. - By using repea Therefore the Perfect Guide learners to use determine the square (i) Determine the squa Assessment Which of the following $40 \quad 64 \quad 676 \quad 50 \quad 4$	perfect ts of mu mong th e first t 40, 45, 18,20, 2, 36, 40 o determ divisio uares 4 , knowl of pe root of umbers 76	ares or perfect numbers. s of numbers and identify a multiples of the following ,... 4 ... 48... if a number is a perfect prime factors. 6, 25, 36 on odd numbers to numbers. perfect square?	Counters, bundle and loose straws base ten cut square, Bundle of sticks	
$\begin{aligned} & \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and learners what they hav Take feedback from lea	effective learnt d ners and	stioning to find out from the lesson. marize the lesson.		

FIRST TERM
WEEKLY LESSON NOTES
WEEK 5

Week Ending:		DAY:	Subject: Mathematics		
Duration: 60MINS			Strand: Number		
Class: B8		Class Size:	Sub Strand: Union \& Intersection Of Sets		
Content Standard: B8.I.I. 2 Identify perfect squares, determine their square root and solve real life problems involving union and intersection of two sets		Indicator: B8.I.I.2.2. Use the knowledge on sets and sets of factors of numbers to solve real life problems involving union and intersection			Lesson: I of I
Performance Indicator: Learners can use sets of factors of numbers to solve real life problems			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)		
References: Mathematics Curriculum Pg. 93					
Phase/Duration	Learners Activities			Resources	
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Revise with learners on the meaning of factors of numbers. A factor is a number that divides into another number exactly and without leaving a remainder. Write this on the board. $2 \times 3=6$ Guide learners to identify 2 and 3 as factors and 6 as the product. Let learners understand that factors are also numbers that multiply together to get another number (product). In groups, learners list the factors of these numbers. I) 6 2) 8 3) 10 Engage learners in different activities to find common factors of numbers. Example: 12 and 15 $I 2=\{I, 2,3,4,6,12\} \quad \text { and } 15=\{1,3,5,15\}$ Common factors $=\{1,3\}$ Guide learners to explain and understand the concept of union and intersection of sets. The union of two sets is a set containing all the elements that are in A or in B. it has the symbol U. For example: $A=\{1,2\}$ and $B=\{2,3\}$ So $A \cup B=\{1,2,3\}$ Have learners note that, in writing the members for the union sets, numbers which are common in both sets are written once. Engage learners in different activities to introduce learners to intersection of sets.			Counters, bundle and loose straws base ten cut square, Bundle of sticks	

	Assessment Guide learners to solve story and real-life problems involving union and intersection of sets (i) There are 80 farmers in a certain village who grow maize and rice or both. Out of the 80 farmers, 50 grow maize and 60 grow rice. (a) Represent the information on a Venn diagram. (b) If x of them grows both crops, write an equation in \times and solve for it	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.	
	Take feedback from learners and summarize the lesson.	

Week Ending:		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Number	
Class: B8		Class Size:		Sub Strand: Decimals	
Content Standard: B8.I.2.I Apply mental mathematics strategies and number properties used to solve problems		Indicator: B8.I.2.I.I Multiply and divide by power of 10 including decimals and the benchmark fractions			Lesson: I of I
Performance Indicator: Learners can multiply and divide by power of 10			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)		
References: Mathematics Curriculum Pg. 94					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	In turns let learners recall multiplication facts up to 144 and related division facts. Recall decimal names of the benchmark fractions converted to decimals or percentages (and vice versa). Learners determine a product when a decimal number is a multiple by 10 Assessment Convert each of the following fractions to percentage. I. $\frac{2}{5}$ 4. If $6 \times 12=$ \qquad then \qquad $\div 12=6$ 2. $\frac{9}{10}$ 5. If $11 \times 7=$ \qquad then \qquad $\div 7=11$ 3. $\frac{7}{25}$ 6. If $8 x$ \qquad $=72$ then $72 \div$ \qquad $=8$				Counters, bundle and loose straws base ten cut square, Bundle of sticks
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.				

FIRST TERM
 WEEKLY LESSON NOTES
 WEEK 6

	2) $84 \times 5 \rightarrow 24 \times 10$ Put learners into groups of five. Use the halving and doubling to solve the following 1. $78 \times 5=$? 3. $200 \times 14=$? 2. $124 \times 3=$? 4. $188 \times 15=$? Assessment Apply halving and doubling to solve each of the following I. 39×20 6. 266×5 2. 75×20 7. 300×5 3. 131×20 8. 226×15 4. 157×20 9. 250×13 5. 220×5 10. 420×20	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending:		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Mental Mathematics Strategies	
Content Standard: B8.I.2.I Apply mental mathematics strategies and number properties used to solve problems		Indicator: B8.I.2.I. 3 Apply mental mathematics strategies to solve word problems		Lesson: 2 of 2
Performance Indicator: Learners can apply mental mathematics strategies and number properties to do calculation			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 93				
Phase/Duration PHASE I: STARTER	Learners Activities Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			Resources
PHASE 2: NEW LEARNING	Revise with learners the four basic operations. a. Addition: Plus, add, find the sum, total, altogether. b. Subtraction: minus, subtract, take away, reduce, difference, decrease, deduct, etc. c. Multiplication: multiply, times, product, groups of, etc. d. Division: shared equally, divide, average, out of, etc. Guide learners to apply the various mental strategies to solve some word problems. Put learners into groups of five, write this sentence on the board, what is 800 g out of Ikg ? Solution $1 \mathrm{~kg}=1000 \mathrm{~g}$ So, 800 g out of $1000 \mathrm{~g}=\frac{800 \mathrm{~g}}{1000 \mathrm{~g}}=\frac{4}{5}$ Therefore, 800 g out of 1 kg is $\frac{4}{5}$ Dean bought a birthday card for $\$ 2.95$. There was an additional $\$ 0.18$ tax. Dean paid for his purchase using a $\$ 10$ bill. How much change should Dean receive? Solution Birthday card for $\$ 2.95$ $\begin{array}{ll}\text { Tax } & \$ 0.18 \\ \text { Total cost } & \$ 3.13\end{array}$ Amount paid - Total cost = change $\$ 10.00-\$ 3.13=\$ 6.87$ Hence, Dean should receive a change of $\$ 6.87$ On Thursday, 30,86I people attended the baseball game. On Friday, 60,192 people attended. On Saturday 30,100 more people attended the game than on Thursday. On which day did more people attend the baseball game: Friday or Saturday? Explain.			Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Solution Thursday $=30,861$ Saturday $=30,861+30,100=60,961$ Friday $=60,192$. Which is greater $=60,961>60,192$ Therefore, more people $(60,961)$ attended the baseball game on Saturday than on Friday $(60,192)$ Provide more opportunities for learners to use mental strategies, short methods and sundry tables to develop fluency in solving problems. Assessment - Henry has 898 pegs in each box. If there are 7 boxes, how many pegs does he have in total? - Dana worked for 7 hours on Thursday, 8 hours on Friday, and 4 hours on Saturday. She is scheduled to work 20 hours next week. How many hours did she work this week? - There are 375 audience tickets available for each taping of the Win It All game show. If 204 shows are taped each year, how many tickets are there in all?	
$\begin{aligned} & \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

FIRST TERM
WEEKLY LESSON NOTES
WEEK 7

	Guide learners to use the distributive property to multiply 325×15 $\begin{aligned} & =325 \times(10+5)=(325 \times 10)+(325 \times 5) \\ & =3,250+1,625 \\ & =4,875 \end{aligned}$ Guide learners to investigate and determine basic division facts including divisibility test Guide learners to determine how a given number is divisible by $3,4,5,6,7,8,9,10$, etc. Assessment Multiply each of the following using the 'expand and box' method. I. 4211×342 2. 3882×217 3. 5034×223 4. 5478×155 5. 6431×144 Solve the following using the vertical place value method I. 442×42 2. 468×56 3. 356×37 4. 403×43 5. 650×29	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

FIRST TERM
WEEKLY LESSON NOTES
WEEK 8

	Solution Kofis notebooks $=8 \times 12=96$ Amas pens $\quad=12 \times 5=\underline{60}$ Altogether $=\mathrm{GH} \varnothing 96+\mathrm{GH} \varnothing 60=\mathrm{GH} \not \subset 156.00$ Assessment (i) A man gave an amount of GH\& 2477.25 to be shared equally among his three children. How much did each receive? (ii) On Adwoa's birthday, the father bought her a pack of chocolate containing 250 bars. If Adwoa took 90 bars of the chocolates and gave the rest to her four friends to share equally, how many bars of chocolates did each receive? (iii) Mrs Yaboi bought 25.25 metres of cloth for her five children. If they share the material equally, how many metres of cloth did each receive?	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending:		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Indices	
Content Standard: B8.I.2.3 Demonstrate understanding and the use of the laws of indices in solving problems (including real life problems) involving powers of natural numbers		Indicator: B8.I.2.3.I Identify and explain the laws of indices and apply the laws of indices to simplify and evaluate numbers involving powers of numbers.		Lesson: 2 of 2
Performance Indicator: Learners can identify and explain the laws of indices and apply the laws of indices to simplify and evaluate numbers involving powers of numbers			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. I				
Phase/Duration PHASE I: STARTER	Learners Activities Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			Resources
PHASE 2: NEW LEARNING	Introduce the concept are and their basic pro Explain that indices are multiplication, where th and the exponent tells itself. Show students how to the meaning of the bas Teach the rules of indic understanding of indice working with indices. T Multiplying indices: base, add their expone $a^{m} \times a^{n}=a^{m+n}$ example: simplify $3^{2} \times 3$ Dividing indices: W subtract their exponen $\frac{a^{m}}{a^{n}}=\mathrm{a}^{\mathrm{m}-\mathrm{n}}$ or $\quad \mathrm{am} \div$ Example: simplify $\frac{3^{7}}{3^{3}}=$ Raising to a power: multiply the exponent $\left(a^{m}\right)^{n}=a^{m \times n}=a^{m n}$ Example: simplify $\left(2^{3}\right)^{2}$	indices: Begin by ties. way of representi number being mu how many times ite a number in in and exponent. Once the studen teach them the ru se include: hen multiplying nu (first law) $=3^{2+3}=3^{5}=243$ dividing number (second law) $=a^{m-n}$ $=3^{4}=81$ hen raising a num the original expon $3 \times 2=26=64$	plaining what indices repeated lied is called the base multiply the base by x form, and explain have a basic that apply to bers with the same with the same base, r to a power, t. (third law)	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Negative indices: A number raised to a negative exponent is equal to I divided by the number raised to the positive exponent. $\mathrm{a}^{-\mathrm{m}}=\frac{1}{a^{m}} \text { or } \frac{1}{a^{n}}=\mathrm{a}^{-\mathrm{n}}$ Example: simplify $5^{-2}=\frac{1}{5^{2}}=\frac{1}{25}$ Assessment If $2 x=16$, what is the value of x ? Simplify $3^{2} \times 3^{4}$. If $5(a-1)=25$, what is the value of a ? Evaluate $4^{3} \div 2^{2}$. Write 8I as a power of 3. Simplify $\left(2^{3} \times 3^{4}\right) \div\left(2^{2} \times 3^{2}\right)$. Write $5^{4} \times 5^{2}$ in index form. If $4 b=\frac{1}{64}$, what is the value of b ? Evaluate $\left(10^{3} \div 10^{2}\right) \times\left(10^{5} \div 10^{3}\right)$. Write $\frac{1}{16}$ as a power of 2.	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

FIRST TERM
WEEKLY LESSON NOTES
WEEK 9

Week Ending:			ject: Mathematics	
Duration: 60MINS			Strand: Number	
Class: B8			Sub Strand: Indices	
Content Standard: B8.I.2.3 Demonstrate understanding and the use of the laws of indices in solving problems involving powers of natural numbers		Indicator: B8.I.2.3.2 Apply the laws of indices to simplify and evaluate numbers involving powers of numbers. (PEDMAS)		Lesson: I of 2
Performance Indicator: Learners can solve story problems involving decimals on the four basic operations.			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 98				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			
PHASE 2: NEW LEARNING	The laws of indices are a set of rules that govern how we can manipulate expressions involving powers of numbers. These rules are: I. Product rule: $a^{m}{ }^{*} a^{n}=a^{(m+n)}$ This rule tells us that when we multiply two numbers with the same base, we can add their exponents to get the exponent of the result. Example: $2^{3} \times 2^{4}=2^{(3+4)}=2^{7}=128$ 2. Quotient rule: $a^{m} / a^{n}=a^{(m-n)}$ This rule tells us that when we divide two numbers with the same base, we can subtract their exponents to get the exponent of the result. Example: $5^{8} / 5^{3}=5(8-3)=55=3125$ 3. Power rule: $\left(a^{m}\right)^{n}=a^{\left(m^{*} n\right)}$ This rule tells us that when we raise a number to a power and then raise the result to another power, we can multiply the exponents to get the exponent of the final result. Example: $\left(3^{4}\right)^{2}=3\left({ }^{\left({ }^{*} 2\right)}=3^{8}=6561\right.$ 4. Negative exponent rule: $a^{(-m)}=1 / a^{m}$ This rule tells us that when we have a negative exponent, we can flip the base and make the exponent positive to get the reciprocal of the result. Example: $2^{-5}=1 / 2^{5}=1 / 32$ 5. Zero exponent rule: $\mathrm{a}^{0}=1$ This rule tells us that any number raised to the power of zero is equal to one. Example: $70=1$ Using these rules, have learners simplify and evaluate expressions involving powers of numbers. Here are a few examples:			Counters, bundle and loose straws base ten cut square, Bundle of sticks

Week Ending:		DAY:	Subject: Mathematics		
Duration: 60MINS			Strand: Number		
Class: B8		Class Size:	Sub Strand: Indices		
Content Standard: B8.I.2.3 Demonstrate understanding and the use of the laws of indices in solving problems involving powers of natural numbers		Indicator: B8.I.2.3.3-4 Solve exponential equations and Solve real life problems involving powers of natural numbers			Lesson: 2 of 2
Performance Indicator: Learners can solve exponential equations and solve real life problems involving powers of natural numbers			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)		
References: Mathematics Curriculum Pg. IOI					
Phase/Duration	Learners Activities			Resources	
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Guide learners to solve exponential equations and Solve real life problems involving powers of natural numbers I. A person has a piece of land that is 50 meters long and 30 meters wide. How many square meters is the land? Solution: The area of the land is given by the product of its length and width, so we have: Area $=50 \mathrm{~m} \times 30 \mathrm{~m}=1500 \mathrm{~m}^{2}$ Therefore, the land has an area of 1500 square meters. 2. A car travels at a speed of $60 \mathrm{~km} / \mathrm{h}$ for 3 hours. How far does the car travel? Solution: The distance travelled by the car is given by the product of its speed and time, so we have: Distance $=$ Speed \times Time $=60$ $\mathrm{km} / \mathrm{h} \times 3 \mathrm{~h}=180 \mathrm{~km}$ Therefore, the car travels 180 kilometers. 3. A building has 10 floors, each with a height of 3 meters. How high is the building? Solution: The total height of the building is given by the product of the height of each floor and the number of floors, so we have: $\text { Height }=10 \times 3 \mathrm{~m}=30 \mathrm{~m}$ Therefore, the building is 30 meters high. 4. A recipe calls for 2 cups of flour, $I / 2$ cup of sugar, and $I / 4$ cup of butter. If you want to make twice the recipe, how much flour do you need? Solution: If we want to make twice the recipe, we need to double the amount of each ingredient. So we have: Flour $=2$ cups $\times 2=4$ cups Sugar $=1 / 2$ cup $\times 2=1$ cup Butter $=1 / 4$ cup $\times 2=1 / 2$ cup Therefore, we need 4 cups of flour to make twice the recipe. 5. A container of juice contains I liter of juice. If we pour I/4 of the juice into a glass, how much juice is left in the container?			Counters, bundle and loose straws base ten cut square, Bundle of sticks	

	Solution: If we pour I/4 of the juice into a glass, we are left with $3 / 4$ of the juice in the container. So we have: Juice left in container $=\mathrm{I} \times 3 / 4=0.75 \mathrm{~L}$ Therefore, there is 0.75 liters of juice left in the container	
PHASE 3:	Use peer discussion and effective questioning to find out from REFLECTION	learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.

FIRST TERM
WEEKLY LESSON NOTES
WEEK 10

REVISION AND END OF TERM ASSESSMENT

Week Ending:			ject: Mathematics	
Duration: 60MINS			Strand: Strands for the term	
Class: B8			Sub Strand: Sub strands for the term	
Content Standard: Demonstrate knowledge and understanding in the topics treated so far.		Indicator: Recall and summarize all what they have learnt within the term		Lesson: I of 2
Performance Indicator: Learners can recall and summarize all what they have learnt within the term			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 98				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			
PHASE 2: NEW LEARNING	The laws of indices are a set of rules that govern how we can manipulate expressions involving powers of numbers. These rules are: 2. Product rule: $a^{m} * a^{n}=a^{(m+n)}$ This rule tells us that when we multiply two numbers with the same base, we can add their exponents to get the exponent of the result. Example: $2^{3} \times 2^{4}=2^{(3+4)}=2^{7}=128$ 3. Quotient rule: $a^{m} / a^{n}=a^{(m-n)}$ This rule tells us that when we divide two numbers with the same base, we can subtract their exponents to get the exponent of the result. Example: $5^{8} / 5^{3}=5(8-3)=55=3125$ 4. Power rule: $\left(a^{m}\right)^{n}=a^{\left(m^{*} n\right)}$ This rule tells us that when we raise a number to a power and then raise the result to another power, we can multiply the exponents to get the exponent of the final result. Example: $\left(3^{4}\right)^{2}=3\left(4^{* 2}\right)=3^{8}=6561$ 5. Negative exponent rule: $\mathrm{a}^{(-\mathrm{m})}=\mathrm{I} / \mathrm{a}^{\mathrm{m}}$ This rule tells us that when we have a negative exponent, we can flip the base and make the exponent positive to get the reciprocal of the result. Example: $2^{-5}=1 / 2^{5}=1 / 32$ 6. Zero exponent rule: $\mathrm{a}^{0}=1$ This rule tells us that any number raised to the power of zero is equal to one. Example: $70=1$			Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Using these rules, have learners simplify and evaluate expressions involving powers of numbers. Here are a few examples: Example I: Simplify 43 * 4^{5} Using the product rule, we can add the exponents: $4^{3} * 4^{5}=4^{(3+5)}=4^{8}=65536$ Assessment 5. Using the power rule, Evaluate $\left(2^{4}\right)^{3}$ 6. Using the quotient rule, Simplify $3^{5} / 3^{2}$ 7. Using the negative exponent rule, Simplify $5(-2)$ 8. Using the zero exponent rule, Simplify 2^{0}	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

