FIRST TERM
 WEEKLY LESSON NOTES
 WEEK 6

Week Ending: 10-II-2023 ${ }^{\text {d }}$ DAY:			Subject: Mathematics	
Duration: IOOMINS			Strand: Number	
Class: B9			Sub Strand: SURDS	
Content Standard: B9.I.2.4 Demonstrate understanding of surds as real numbers, the process of adding and subtracting of surds		Indicator: B9.I.2.4.I Identify simple and compound surds.		Lesson: I of 2
Performance Indicator: Learners can identify and simplify simple and compound surds.			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 169				
New words: Surds, Simple Surd, Compound, Radicand				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Display the following numbers on the board: $\sqrt{ } 3, \sqrt{ } 18, \sqrt{ } 2, \sqrt{ } 50$. Ask learners, "What do these numbers have in common, and how might they be different from each other?" Share performance indicators and introduce the lesson.			
PHASE 2: NEW LEARNING	Briefly discuss what surds remove a square root). Explain the terminology: called the 'radicand'. Define a simple surd as a further simplified. Provide examples, such as simple surds (because th squares, apart from I). Define a compound surd simplified further by facto Use examples to illustrat $\sqrt{ }(9 \times 2)$ or $3 \sqrt{ } 2$. Guide learners through the surds. Example: Simplify the com Solution To simplify the compound	re (numbers tha number under uare root whos $\sqrt{2}$ or $\sqrt{ } 3$, and ex don't have factors a square root ing out perfect s For instance, $\sqrt{ }$ I process of simp ound surd: $\sqrt{ } 72$. $\sqrt{ } 72$, you can si	can't be simplified to the square root sign is radicand cannot be plain why these are which are perfect hose radicand can be quares. 8 can be written as lifying a few compound mplify it as follows:	Number cards

	$\sqrt{72}=\sqrt{ }(36 * 2)$ Now, simplify the square root of 36 , which is 6 : $\sqrt{ }(6 * 2)=6 \sqrt{ } 2$ So, the simplified form of $\sqrt{ } 72$ is $6 \sqrt{ } 2$. Distribute a set of cards to each student or small groups, where each card has a surd written on it. Example: $\sqrt{ } 50, \sqrt{ } 18, \sqrt{ } 98, \sqrt{ } 54, \sqrt{ } 75$, etc. Ask learners to sort these cards into two piles: simple surds and compound surds. After sorting, encourage learners to pick a compound surd and simplify it. Example: Simplify $\sqrt{ } 162$ solution $\sqrt{ } 162=\sqrt{ }(9 * 18)$ We can start by factoring 162 as $=\sqrt{ } 9=3$ and $\sqrt{ } 18=(9 * 2)$ $=3 * 3 \sqrt{2}$ So, the simplified form of $\sqrt{ } 162$ is $9 \sqrt{ } 2$ Assessment I. Simplify the compound surd: $\sqrt{ } 72$. 2. Is $\sqrt{5}$ a simple or compound surd? Explain your answer. 3. Simplify $\sqrt{ } 45$. 4. Simplify $\sqrt{ } 80$. 5. Simplify $\sqrt{ } 28$. 6. Simplify $\sqrt{ } 63$. 7. Simplify $\sqrt{ } \mathrm{I} I 2$. 8. Simplify $\sqrt{ } 200$.	
$\begin{aligned} & \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending: 10-11-2023		DAY:	Subje	Mathematics	
Duration: 100MINS				Strand: Number	
Class: B9		Class Size:		Sub Strand: SURDS	
Content Standard: B9.I.2.4 Demonstrate understanding of surds as real numbers, the process of adding and subtracting of surds			Indicator: B9.I.2.4.2 Explain the identities/rules of surds		Lesson: I of 2
Performance Indicator: Learners can understand the fundamental identities and rules of surds and apply them in mathematical expressions.				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 169					
New words: Surds, Simple Surd, Rationalizing, Radicand					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Begin with a math puzzle. Display the following expressions on the board: $\sqrt{ } 4, \sqrt{ } 9, \sqrt{ } 16$, and $\sqrt{ } 25$. Ask learners, "What do you notice about these numbers, and how can you describe this pattern?" Share performance indicators and introduce the lesson.				
PHASE 2: NEW LEARNING	Revise cannot Explain 'radican Identity Introdu surds multiply Provide $\sqrt{ }(3 * 5)$ Identity Introdu surds radican Provide Identity	earners on t plified to wh he number $1-\sqrt{ } a * \sqrt{ } b=$ product ru e same index e radicands. ples and gui 5. 2- $\sqrt{ } a / \sqrt{ } b=$ quotient ru e same index ples and gui $3-\frac{b}{\sqrt{\mathrm{a}}}=\frac{b}{\sqrt{ }}$	definition of surd le numbers. der the square root $\sqrt{(a * b)}:$ explaining that w e.g., both $\sqrt{ }$ a), you learners through (a / b): explaining that w you can simplify th learners: $\sqrt{ } 12 / \sqrt{ }$ $* \frac{\sqrt{\mathrm{a}}}{\sqrt{\mathrm{a}}}=\frac{\mathrm{b} \sqrt{\mathrm{a}}}{\mathrm{a}}$	square roots that n is called the you multiply two simplify them by process: $\sqrt{ } 3 * \sqrt{ } 5=$ you divide two by dividing the $\sqrt{ }(12 / 3)=\sqrt{ } 4=2 .$	Number cards

	Introduce Rule 3, explaining that it's used when you have a surd in the denominator of a fraction. Walk through the steps: $b /(\sqrt{ } a)=b /(\sqrt{ } a) *(\sqrt{ }) /(\sqrt{ } a)=(b \sqrt{ } a) / a$. Provide examples and let students practice. Example I: Simplify $5 / \sqrt{ } 3$. Solution: $5 / \sqrt{ } 3=5 / \sqrt{ } 3 * \sqrt{ } 3 / \sqrt{ } 3=(5 \sqrt{ } 3) / 3$ Example 2: Simplify $2 / \sqrt{ } 6$. Solution: $2 / \sqrt{ } 6=2 / \sqrt{ } 6 * \sqrt{ } 6 / \sqrt{ } 6=(2 \sqrt{ } 6) / 6=\sqrt{ } 6 / 3$ Identity: Rule $4-a \sqrt{ } c+b \sqrt{ } c=(a+b) \sqrt{ } c:$ Introduce Rule 4, explaining that it's used when adding or subtracting surds with the same index and radicand. Walk through the steps: $a \sqrt{ } c+b \sqrt{ } c=(a+b) \sqrt{ } c$. Provide examples and let students practice. Example I: Simplify $4 \sqrt{ } 5+3 \sqrt{ } 5$ using Rule 4. Solution: $4 \sqrt{ } 5+3 \sqrt{ } 5=(4+3) \sqrt{ } 5=7 \sqrt{ } 5$ Example 2: Simplify $\sqrt{ } 7+2 \sqrt{ } 7$ using Rule 4. Solution: $\sqrt{ } 7+2 \sqrt{ } 7=(I+2) \sqrt{ } 7=3 \sqrt{ } 7$ Identity: Rule $5-: \frac{c}{\mathrm{a}+\mathrm{b} \sqrt{\mathrm{n}}}=\frac{c}{\mathrm{a}+\mathrm{b} \sqrt{\mathrm{n}}} * \frac{a-b \sqrt{\mathrm{n}}}{a-b \sqrt{\mathrm{n}}}$ Introduce Rule 5, explaining that it's used for rationalizing the denominator when the denominator contains a sum. Walk through the steps: $c /(a+b \vee n)=c /(a+b \vee n) *(a-b \vee n) /(a-b \vee n)$. Provide examples and let students practice. Example I: Rationalize the denominator in the expression $5 /(3+\sqrt{ } 2)$. Solution: $\begin{aligned} & 5 /(3+\sqrt{ } 2)=5 /(3+\sqrt{ } 2) *(3-\sqrt{ } 2) /(3-\sqrt{ } 2)=(5 *(3-\sqrt{ } 2)) /\left(3^{\wedge} 2-\right. \\ & \left.(\sqrt{ } 2)^{\wedge} 2\right)=(15-5 \sqrt{ } 2) /(9-2)=(15-5 \sqrt{ } 2) / 7 \end{aligned}$	

	Example 2: Rationalize the denominator in the expression $2 /(I+\sqrt{ } 5)$. Solution: $\begin{aligned} & 2 /(I+\sqrt{ } 5)=2 I(I+\sqrt{ } 5) *(I-\sqrt{ } 5) /(I-\sqrt{ } 5)=(2 *(I-\sqrt{ } 5)) /(I \wedge 2- \\ & \left.(\sqrt{5})^{\wedge} 2\right)=(2-2 \sqrt{ } 5) /(I-5)=(2-2 \sqrt{ } 5) /-4=-(I / 2)+(I / 2) \sqrt{5} \end{aligned}$ Identity: Rule $6-\frac{c}{\mathrm{a}-\mathrm{b} \sqrt{\mathrm{n}}}=\frac{c}{\mathrm{a}-\mathrm{b} \sqrt{\mathrm{n}}} * \frac{a+b \sqrt{\mathrm{n}}}{a+b \sqrt{\mathrm{n}}}$: Introduce Rule 6, explaining that it's used for rationalizing the denominator when the denominator contains a difference. Walk through the steps: $c /(a-b \sqrt{n})=c /(a-b \sqrt{n}) *(a+b \sqrt{n}) /(a+b \sqrt{n})$. Provide examples and let students practice Example I: Rationalize the denominator in the expression $3 /(2-\sqrt{ } 3)$ Solution: $\begin{aligned} & 3 /(2-\sqrt{ } 3)=3 /(2-\sqrt{ } 3) *(2+\sqrt{ } 3) /(2+\sqrt{ } 3)=(3 *(2+\sqrt{ } 3)) /\left(2^{\wedge} 2-\right. \\ & \left.(\sqrt{ } 3)^{\wedge} 2\right)=(6+3 \sqrt{ } 3) /(4-3)=(6+3 \sqrt{ } 3) / I=6+3 \sqrt{3} \end{aligned}$ Example 2: Rationalize the denominator in the expression $4 /(I-\sqrt{ } 2)$. Solution: $\begin{aligned} & 4 /(I-\sqrt{ } 2)=4 I(I-\sqrt{ } 2) *(I+\sqrt{ } 2) /(I+\sqrt{ } 2)=(4 *(I+\sqrt{ } 2)) /\left(I^{\wedge} 2-\right. \\ & \left.(\sqrt{ } 2)^{\wedge} 2\right)=(4+4 \sqrt{ } 2) /(I-2)=(4+4 \sqrt{ } 2) /-I=-4-4 \sqrt{ } 2 \end{aligned}$ Provide learners with a set of surd expressions to simplify using the rules discussed. Encourage group work and peer learning. Allow learners to check their work collaboratively. Assessment I. Apply the product rule to simplify $\sqrt{ } 2 * \sqrt{ } 8$. 2. Use the quotient rule to simplify $\sqrt{ } 15 / \sqrt{ } 5$. 3. Rationalize the denominator in the expression $\mathrm{I} / \sqrt{ } 2$. 4. Simplify the expression $4 \sqrt{ } 7 / \sqrt{ } 2$ using the surd rules. 5. What is the result of applying Rule 4 to $5 \sqrt{ } 3+2 \sqrt{ } 3$? 6. Use Rule 5 to rationalize the denominator in the expression 7 / $(1+\sqrt{ } 5)$. 7. Apply Rule 6 to rationalize the denominator in $3 /(2-\sqrt{ } 6)$.	
$\begin{aligned} & \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

