# SECOND TERM WEEKLY LESSON NOTES WEEK I 

| Week Ending: 12-01-2024 |  | DAY: |  | Mathematics |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Duration: 60MINS |  |  |  | Strand: Number |  |
| Class: B9 |  | Class Size: | Sub Strand: Ratios and Proportion |  |  |
| Content Standard: <br> B9.I.4.I Apply the understanding of ratio, rate and proportions to solve problems that involve rates, ratios, and proportional reasoning and use it to solve real world mathematical problems |  |  | Indicator: <br> B9.I.4.I.I Represent proportional relationships by equations. |  | Lesson: <br> I of I |
| Performance Indicator: <br> Learners can interpret the slope and $y$-intercept in the context of proportionality and apply equations to solve problems involving proportional relationships. |  |  |  | Core Competencies: <br> Communication and Collaboration (CC) Critical Thinking and Problem solving (CP) |  |
| References: Mathematics Curriculum Pg. 175 |  |  |  |  |  |
| New words: Proportional Relationship, Constant, interpret |  |  |  |  |  |
| Phase/Duration | Learners Activities |  |  |  | Resources |
| PHASE I: STARTER | Begin with a class discussion about real-world scenarios involving proportional relationships. List these scenarios on the board. <br> - The cost of apples is directly proportional to the number of apples bought. <br> - The time it takes to complete a task is directly proportional to the number of workers. <br> Discuss how these relationships might be represented mathematically. <br> Share performance indicators and introduce the lesson. |  |  |  |  |
| PHASE 2: NEW LEARNING | Introduce the concept of representing proportional relationships using equations. Discuss the form $y=k x$, where $k$ is the constant of proportionality. <br> Consider this example: <br> If total cost $(t)$ is proportional to the number of items $(n)$ purchased at a constant price ( p ), the relationship between the total cost and the number of items can be expressed as $\mathrm{t}=\mathrm{pn}$. <br> Work through examples with the class. Discuss how to identify the constant of proportionality from a scenario. <br> Example I: <br> If the cost (C) of 5 notebooks $(\mathrm{N})$ is GH I 5 , write the equation representing this relationship. |  |  |  | Counters, bundle and loose straws base ten cut square, Bundle of sticks |


|  | Provide learners with several scenarios and guide them in representing these relationships using equations. <br> Work through problems together, emphasizing identifying the constant of proportionality. Discuss different ways to express proportional relationships. <br> Example 2: <br> The total cost $(\mathrm{T})$ of renting bikes is directly proportional to the number of hours $(H)$ they are rented. If it costs GH©8 for 2 hours, write the equation representing this relationship. <br> Solution <br> T: The total cost of renting bikes. <br> GH©4/hour: The constant of proportionality, representing the cost per hour of renting a bike. <br> H : The number of hours the bikes are rented. <br> b: The y-intercept, representing any fixed costs (unknown in this case). <br> But with the given information, the equation $\mathrm{T}=\mathrm{GH} \mathbb{4} 4 /$ /hour $* \mathrm{H}+\mathrm{b}$ is the most accurate representation of the proportional relationship. <br> Show learners how to plot points from the proportional relationship table on graph paper. <br> Connect the points to form a straight line, highlighting the consistent slope. <br> Discuss how the slope reveals the direction and steepness of the proportional relationship. <br> Offer an optional activity where learners try to guess the equation based on the graph's slope and intercepts. <br> Assessment <br> I. The total cost ( T ) of buying apples is directly proportional to the number of kilograms $(\mathrm{H})$ purchased. If it costs $\mathrm{GH} \mathbb{5}$ for I kilogram. write the equation representing this relationship <br> 2. The total cost $(\mathrm{T})$ of making long-distance calls is directly proportional to the call duration $(\mathrm{H})$ in minutes. If it costs $\mathrm{GH} \mathbb{2}$ for a 5 -minute call. write the equation representing this relationship <br> 3. The total cost $(T)$ of buying movie tickets is directly proportional to the number of tickets $(\mathrm{H})$ purchased. If it costs GHCIO for 2 tickets. write the equation representing this relationship |  |
| :---: | :---: | :---: |
| PHASE 3: REFLECTION | Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. <br> Take feedback from learners and summarize the lesson. |  |


| Week Ending: I2-01-2024 | DAY: | Subject: Mathematics |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Duration: 60MINS |  |  |  |  |


|  | Have them compare options and present their findings to the class, <br> focusing on cost-effectiveness and responsible consumer choices. <br> Prepare cards with different percentages (I0\%, 25\%, 50\%) and product <br> prices. Learners pick a card and a price, then calculate the discounted <br> price. <br> Provide magazine clippings with pictures of items from different price <br> ranges. <br> Challenge learners to create a collage representing a specific budget by <br> selecting and cutting out items within their imaginary limits. <br> Discussing their choices and budget considerations adds another layer of <br> engagement. <br> Set up a "mini-market" with real or toy products labelled with prices. <br> Have learners "shop" using pretend money and practice calculating their <br> total cost with tax before "paying" at a designated cashier. Rotate roles so <br> everyone gets to shop and calculate. <br> Use toy cars (or pictures) with different starting prices and depreciation <br> rates. <br> Learners roll dice to represent time passing and calculate the decreasing <br> value of their cars over time. The "richest" car owner at the end wins, <br> sparking discussion about depreciation and its real-world implications. | Use peer discussion and effective questioning to find out from learners <br> what they have learnt during the lesson. |
| :--- | :--- | :--- |
| Take feedback from learners and summarize the lesson. |  |  |

