SECOND TERM WEEKLY LESSON NOTES
 WEEK 6

Week Ending:	DAY:	Subject: Mathematics		
Duration: 60MINS			Strand: Algebra	
Class: B9	Class Size:	Sub Strand: Algebraic Expressions		
Content Standard: B9.2.2.I Demonstrate an understanding of (i) change of subject (ii) substituting values to evaluate expressions, and (iii) factorize expressions that have simple binomial as a factor		Indicator: B9.2.2.I. 3 Factorize expressions that have simple binomial		Lesson: I of I
Performance Indicator: Learners can Identify common factors in expressions and apply the distributive property to factorize expressions with simple binomials.			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 182				
New words: Factorize, distributive, property, binomials				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Capture attention with a secret code-breaking activity or a "factorization treasure hunt" around the classroom. Introduce factorization as a way to decode expressions and reveal hidden structures. Review basic terms like factors, product, and monomial. Share performance indicators and introduce the lesson.			
PHASE 2: NEW LEARNING	Guide learners to identify commo examples: $\begin{aligned} & 6 x+4=2(3 x+2) \\ & 15 y-10=5(3 y-2) \end{aligned}$ Emphasize the distributive proper common factors. Introduce factorization of simple $\begin{aligned} & x^{2}+5 x=x(x+5) \\ & 6 y-4 y^{2}=2 y(3-2 y) \end{aligned}$ Provide guided practice with vario participation. Highlight patterns and strategies fo Present more complex expression Example I: factorize completely $2 x^{2}$	factor as the nomial s exam efficie involv $+6 x$	in expressions using key to "unlocking" les, encouraging student factorization. g multiple binomials:	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Solution $2 x^{2}+6 x-4=2\left(x^{2}+3 x-2\right)$ $=2(x+2)(x+1)$ Example 2: factorize completely $10 y^{2}-5 y-15$ Solution $10 y^{2}-5 y-15=5\left(2 y^{2}-y-3\right)$ $=5(2 y+1)(y-3)$ Encourage teamwork and problem-solving skills. Provide differentiated worksheets for individual practice. Offer support and feedback as needed. Assessment	
	Factorize the following expressions i. $3 x+4 x y=x(3+4 y)$ ii. $12 a b+16 b=4 b(3 a+4)$ iii. $-13 x y+39 x=-13 x(y-3)$ iv. $5 y-2 y 2+3 y=-3 y+3 y$ v. $8 y-2 y 2=2 y(4-y)$ vi. $-6 x+12=-3(2 x-4)$	
	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.	Take feedback from learners and summarize the lesson.
PHASE 3:		
REFLECTION		

Week Ending:	DAY:	Subject: Mathematics		
Duration: 60MINS			Strand: Algebra	
Class: B9	Class Size:	Sub Strand: Algebraic Expressions		
Content Standard: B9.2.2.I Demonstrate an understanding of (i) change of subject (ii) substituting values to evaluate expressions, and (iii) factorize expressions that have simple binomial as a factor		Indicator: B9.2.2.I. 4 Use the knowledge of simplifying and factorizing expressions to solve real world problems		Lesson: I of I
Performance Indicator: Learners can translate real-world scenarios into mathematical models using formulas and solve real-world problems involving simplification and factorization			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 182				
New words: real-world, scenarios, formulas, simplification, factorization				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Begin by showcasing engaging images or scenarios highlighting applications of mathematics in everyday life (e.g., construction, sports, cooking). Discuss how formulas and calculations power these activities. Briefly review key simplification and factorization skills. Share performance indicators and introduce the lesson.			
PHASE 2: NEW LEARNING	Introduce the concept of translat mathematical expressions. Use a simplified example like calcula fruits based on their price per kil Guide learners through identifyin expressions, and simplifying to ob Present a problem involving mor factorization for efficient solution For example, calculating the area rectangular sections with differen Demonstrate how factorization streamline the calculations. Encourage learners to explain th Provide a variety of real-world p projected images. Each scenario should involve var simplification and/or factorization.	ng real-wo lating the gram. relevant tain the fin complex of a garden dimensio n simplify reasonin oblem scen bles, form	situations into cost of buying bles, writing nswer. ulations, requiring er combining expression and d steps. s on worksheets or and potential for	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Encourage individual or group work, fostering collaboration and discussion. Offer support and guidance as needed. Example I: You purchased IO items from a shopping plaza, and now you need plastic bags to carry them home. If each bag can hold only 3 items, how many plastic bags will you need to accommodate the 10 items? Solution: We use simple algebraic formula $\frac{x}{y}$ to calculate the number of bags. $x=$ Number of items purchased $=10$ $y=$ Capacity of I bag $=3$ Hence, $\frac{10}{3}=3.333$ bags $=4$ bags So, we need 4 shopping bags to carry 10 items. Example 2: You have to buy two dozen of eggs priced at GH© IO, three loaves breads (each bread is GH\$5), and five bottles of juice (each bottle is GHC8). How much money will you need to take to the grocery store? Solution The prices are $\mathrm{a}=$ Price of two dozen eggs $=\mathrm{GH}$ I 10 $\mathrm{b}=$ Price of one bread $=$ GH\$5 $\mathrm{c}=$ Price of one bottle of juice $=\mathrm{GH} 8$ => Money needed $=\mathrm{a}+3 \mathrm{~b}+5 \mathrm{c}$ $=>$ Money needed $=G H \mathbb{C} 10+3(\mathrm{GH} \Phi 5)+5(\mathrm{GH} 8)=\mathrm{GH} 10+$ GHCI5 + GHW40 = GHC65 Dedicate time for learners to share their solutions and approaches to different problems. Assessment I. The area of a rectangle is 72 cm 2 . The length is twice its width. What is the length and width of the rectangle?	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

