SECOND TERM
 WEEKLY LESSON NOTES
 WEEK 7

Week Ending:		Subject: Mathematics		
Duration: 60MINS		Strand: Algebra		
Class: B9		Sub Strand: Variables and Equations		
Content Standard: B9.2.3. I Demonstrate understanding of single variable linear inequalities with rational coefficients		Indicator: B9.2.3.I.I Solve single variable linear inequalities with rational coefficients		Lesson: I of I
Performance Indicator: Learners can identify key terms like inequality symbols (<, >, \leq, \geq), variables, and coefficients and apply algebraic operations to solve single-variable linear inequalities.			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 182				
New words: variables, single-variable, linear, inequalities, coefficients				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Introduce inequalities as mathematical expressions representing "unequal" relationships, using balance scales as a visual analogy. Demonstrate how weights on each side represent expressions and how the inequality symbol indicates which side is "heavier." Compare inequality symbols to equality symbols to highlight the difference. Share performance indicators and introduce the lesson.			
PHASE 2: NEW LEARNING	Review inequality symbols (<, >, \leq, \geq) and their meanings in words and on a number line. Provide examples and practice with comparing numbers and identifying correct symbols. Explain how algebraic operations (addition, subtraction, multiplication, division) affect inequalities, emphasizing the importance of "flip-flopping" the inequality symbol when multiplying or dividing by a negative number.			Number line models (printable or interactive)

	We then divide both sides of the inequality by 3. This gives us: $x<3$ Example 2: Solve $-2 y \geq 10$ Solution $-2 y \geq 10=-2 y /-2 \geq 10 /-2=y \leq-5$ Example 3: Solve $4 x-7>3 x+2$ Solution we first need to isolate the x term $=4 x-3 x>2+7$ $=x>9$ Demonstrate how to represent solutions of linear inequalities on a number line, using shading or arrows to indicate the range of values. Provide practice with graphing solutions individually or in pairs. Assessment 1. $2 x+7>\frac{5}{2}$ 2. $\frac{4}{5}-\frac{1}{5} x>\frac{2}{7}$ 3. $\frac{3}{2} y-\frac{2}{5}<\frac{4}{5}$ 4. $\frac{1}{2}(5 x-4)<x+\frac{11}{24}$ 5. $\frac{1}{3}>x-\frac{4}{5}$ 6. $\frac{1}{2}(x+3) \leq x+1$	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending:		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Algebra	
Class: B9	Class Size:		Sub Strand: Variables and Equations	
Content Standard: B9.2.3. I Demonstrate understanding of single variable linear inequalities with rational coefficients		Indicator: B9.2.3.I.I Solve single variable linear inequalities with rational coefficients		Lesson: I of I
Performance Indicator: Learners can represent solutions graphically on a number line			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 182				
New words: variables, single-variable, linear, inequalities, coefficients				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson by inviting volunteers to solve questions on the board. Share performance indicators and introduce the lesson.			
PHASE 2: NEW LEARNING	Introduce inequalities as ma "unequal" relationships, usin Explain how weights on eac inequality symbol shows wh Play a quick memory game symbols (<, >, \leq, \geq) to solid Discuss the difference betw emphasizing the "tipping poi Provide guided practice with - $3 x+5>14$ (Solve f - $-2 y \leq 10$ (Isolate y a - $4 \mathrm{x}-7<3 \mathrm{x}+2$ (Co Introduce the number line a where each point represent	matical expr he balance as ide represen side "outwe matching activi their recogn these symb aspect of in xamples: x and flip the flip the sign ine like term court of jus potential sol	sions representing visual metaphor. xpressions and how the s" the other. y with inequality n. and the equal sign (=), ualities. ign when dividing by 3) hen multiplying by -1) before comparing) e for inequalities, ion.	Dice or spinners (optional, for generating practice problems

	Demonstrate how to shade or mark the regions on the number line that satisfy the inequality based on the symbol. Encourage learners to practice graphing solutions individually or in pairs, discussing their reasoning. ASSESSMENT I. $\frac{1}{2}(2 x+3) \geq x+1$ 2. $-\frac{2}{3} x+3 \geq 0$ 3. $\frac{1}{2}(x+3) \leq x+1$	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

