SECOND TERM
 WEEKLY LESSON NOTES
 WEEK 8

Week Ending: ${ }^{\text {d }}$ DAY:			Subject: Mathematics	
Duration: 60MINS			Strand: Algebra	
Class: B9	Class Size:		Sub Strand: Variables and Equations	
Content Standard: B9.2.3. I Demonstrate understanding of single variable linear inequalities with rational coefficients		Indicator: B9.2.3.I. 2 Illustrate solution sets of linear inequalities on the number line		Lesson: I of I
Performance Indicator: Learners can Illustrate solution sets of linear inequalities on the number line			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 182				
New words:				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Play a quick "true or false" game to activate prior knowledge of equality and order of operations. Show examples like $5+3=8$ (true), $4 \times 2<6$ (true), $\mathrm{I} 0 / 2>4$ (false). Introduce the concept of inequalities as comparisons that are not "equal to." Ask learners for examples of situations where "less than," "greater than," etc. are used in real life. Share performance indicators and introduce the lesson.			
PHASE 2: NEW LEARNING	Show and explain each inequality sign with clear visualizations: - "<" as an open mouth "eating" the larger number. - ">" as an open mouth "swallowing" the smaller number. - " \leq " as a closed mouth including the larger number as a possibility. - " \geq " as a closed mouth including the smaller number as a possibility. Write clear examples of each symbol used in inequalities like $4<9$, $7>2,3 \leq 5$, and I ≥ 0.			Counters, bundle and loose straws base ten cut square, Bundle of sticks

Week Ending: ${ }^{\text {DAY: }}$			Subject: Mathematics	
Duration: 60MINS			Strand: Algebra	
Class: B9			Sub Strand: Variables and Equations	
Content Standard: B9.2.3. I Demonstrate understanding of single variable linear inequalities with rational coefficients		Indicator: B9.2.3.I. 2 Illustrate solution sets of linear inequalities on the number line		Lesson: I of I
Performance Indicator: Learners can illustrate solution sets of linear inequalities on the number line			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 182				
New words:				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Review previous knowledge of inequalities with a quick quiz or game. Ask learners to recall the symbols and their meanings ($<,>, \leq, \geq$) and give examples of each. Discuss real-life scenarios where inequalities are used, like budget limitations or competition rankings Share performance indicators and introduce the lesson.			
PHASE 2: NEW LEARNING	Start with simple inequalities of isolating x by dividing both Explain how the inequality si divide both sides by a positiv Reverse the inequality if nec Introduce the concept of "b solutions. Start with simple inequalities of isolating x by dividing both Explain how the inequality si divide both sides by a positiv Reverse the inequality if nec	ke $2 x<6$ ides by remain number ary to dary ke $2 x$ ides by remain number ary to	6. Demonstrate the process unchanged if we multiply or nsure x is isolated on the left. ints" and their role in 6. Demonstrate the process unchanged if we multiply or nsure x is isolated on the left.	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Introduce the concept of "boundary points" and their role in solutions. Introduce the concept of graphing linear inequalities on a Cartesian plane (coordinate system). Explain how linear inequalities translate to linear equations with specific shading regions. Start with simple examples like $y \leq 2 x$, where the equation forms a boundary line and we shade the region below it. Discuss how the direction of the inequality determines the shading direction (above or below the line).	
PHASE 3: Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. REFLECTION Take feedback from learners and summarize the lesson.		

