SECOND TERM
 WEEKLY LESSON NOTES
 WEEK 9

Week Ending:		Subject: Mathematics	
Duration: 60MINS		Strand: Algebra	
Class: B9		Sub Strand: Variables and Equations	
Content Standard: B9.2.3. I Demonstrate understanding of single variable linear inequalities with rational coefficients		Indicator: B9.2.3.I. 3 Solve real-life problems involving linear equations and inequalities	Lesson: I of I
Performance Indicator: Learners can translate word problems into mathematical equations and inequalities.		Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 193			
New words:			
Phase/Duration	Learners Activities		Resources
PHASE I: STARTER	Engage learners with a "guess the mystery number" game. Give clues that lead to an equation, and let learners solve for the unknown number. Discuss real-life examples where they might use math in their daily lives (e.g., budgeting, cooking, sports). Ask them if they ever encounter situations where equations or inequalities might be helpful. Share performance indicators and introduce the lesson.		
PHASE 2: NEW LEARNING	Present several scenario-based word problems involving linear equations and inequalities. Examples could include: - Planning a movie night with popcorn and drinks on a limited budget. - Calculating the distance traveled based on speed and time. - Determining the age range eligible for a school bus pass. Guide learners through analyzing each problem, identifying key information, and recognizing which mathematical concepts apply.		manipulatives like counters or algebra tiles

	Example 3: Two sides of a triangle have lengths 6 cm and 8 cm . What is the length of the third side? Note: The sum of the lengths of the two sides of a triangle is greater than the length of the third side If the third side is $x \mathrm{~cm}$ long then, $6+8>\mathrm{x}$ giving $\mathrm{x}<14$ Also, $6+x<8$ giving $x>2$. Also, $8+x>6$ which gives $x>-2 h$ Hence, $2<x<14$. That is, the third side has length between 2 cm and 14 cm . Example 4: Encourage learners to ask questions and clarify any confusion before moving on. Guide learners through the process of solving their mathematical equations or inequalities. Emphasize proper steps like isolating variables, combining like terms, and using appropriate operations. Encourage the use of manipulatives or visuals to aid understanding when necessary. Celebrate finding the solutions and discuss their meaning in the context of the original problem. Assessment A student scores 70 and 76 marks in two tests. How many marks must she score in the third test to be put in Grade A if all learners scoring an average of 80 or higher in three tests are put in grade A ?	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending:		Subject: Mathematics	
Duration: 60MINS		Strand: Algebra	
Class: B9		Sub Strand: Variables and Equations	
Content Standard: B9.2.3. I Demonstrate understanding of single variable linear inequalities with rational coefficients		Indicator: B9.2.3.I. 3 Solve real-life problems involving linear equations and inequalities	Lesson: I of I
Performance Indicator: Learners can translate word problems into mathematical equations and inequalities.		Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 193			
New words:			
Phase/Duration	Learners Activities		Resources
PHASE I: STARTER	Engage learners with a "guess the mystery number" game. Give clues that lead to an equation, and let learners solve for the unknown number. Discuss real-life examples where they might use math in their daily lives (e.g., budgeting, cooking, sports). Ask them if they ever encounter situations where equations or inequalities might be helpful. Share performance indicators and introduce the lesson.		
PHASE 2: NEW LEARNING	Guide learners through analyzing each problem, identifying key information, and recognizing which mathematical concepts apply. Break down each scenario into simpler components. Show learners how to translate words like "total cost," "speed," or "age range" into mathematical variables and expressions. Demonstrate how relationships between variables can be written as equations with equal signs or inequalities with comparison signs. Example I: If a student needs an average of 85 in four tests to get Grade A, and their scores in the first three tests are 80,90 , and 88 , what must they score in the fourth test?		manipulatives like counters or algebra tiles

	costs $\mathbb{C} 15$. If you spend $\mathbb{C} 85$ without exceeding the discount limit, how many fiction books did you buy? 2. A library charges different fees for fiction and non-fiction books. Fiction books cost $\mathbb{\$} 2$ each, and non-fiction books cost $\mathbb{\$} 3$ each. A student borrowed 7 books in total and paid $\mathbb{C} 17$. How many fiction and non-fiction books did they borrow? 3. At a school fundraiser, you sell homemade cookies for $\mathbb{C} .50$ each and cupcakes for $\mathbb{\$} 2.00$ each. Your goal is to raise $\mathbb{C} 60$. If you only sold 40 items in total, how many of each type did you sell? 4. A toy store offers a special pricing structure where the price of a toy is equal to the child's age multiplied by $\mathbb{\$}$. If a child with 7 years old and another child with 9 years old spend $\mathbb{\$} 54$ together, how many toys did they buy in total? 5. Five friends decide to buy a used textbook together. The book costs $\mathbb{C} 30$, and they want to split the cost equally. However, one friend forgets to pay their share. How much does each of the remaining friends need to pay now?	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

