THIRD TERM

WEEKLY LESSON NOTES

WEEK 3

Week Ending:	DAY:		Subject: Mathematics	
Duration: 60MINS			Strand: Handling Data	
Class: B9		Class Size:	Sub Strand: Data	
Content Standard: B9.4.I. 2 Select, justify, and use appropriate methods of collecting data (quantitative and qualitative), organise and analyse the data (grouped/ungrouped) to interpret the results using the descriptive statistics (measures of central tendency and range)		Indicator: B9.4.I.2.I - Select a method for collecting data (quantitative and qualitative), taking into consideration how bias (use of language, ethics, cost, time and timing, privacy or cultural sensitivity) may influence data.		Lesson: I of I
Performance Indicator: Learners can explore different methods for collecting quantitative and qualitative data and identify potential biases in various data collection methods.			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving	
References: Mathematics Curriculum Pg.				
New words:				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Conduct a quick survey in class about a preferred learning activity (e.g., group work, presentations, quizzes). Ask learners to raise hands or use response cards to indicate their choices. Discuss how this method collects data (quantitative) and highlight the importance of clear question wording to avoid bias.			
PHASE 2: NEW LEARNING	Introduce the concept of quantitative data (numerical) and qualitative data (descriptive, non-numerical). Explain that data collection methods can be chosen based on the type of data needed.			Counters, bundle and loose straws base ten cut square, Bundle of sticks

Example 4: Suppose you tell your classmates that the response to the question in the Class Survey Question Form is to help you plan remedial classes.

What is your worst subject?

If you then use the information collected to write an article for the school magazine how would your actions be described and how would that influence future surveys you conduct?

Example 5: Suppose in a survey questionnaire you wanted to know the favourite method of cooking pork and you asked:

Please tick the box against your favourite method of cooking pork

Please tick the box against your favourite method of cooking pork (Optional)GrillingFrying

This question does not apply to everyone because some people do not eat pork (i.e. the question is not culturally sensitive.) A better question would be;

If you eat pork please name the favourite method you cook it.
\qquad

Divide the class into small groups. Distribute scenarios for role-playing activities (prepared beforehand) that describe a data collection situation. These scenarios can involve choosing a method for a school project or identifying potential bias in a survey.

Example I: Your group is assigned a project on healthy eating habits.
What data collection method would be most suitable (survey, interview, observation)?
How would you design the method to gather reliable information?
Example 2: A survey asks learners to rate the difficulty of different math topics. The answer choices are "very easy," "easy," "difficult," and "very difficult."

	Might this wording introduce bias? How could the question be improved? Have each group discuss the scenario, propose a data collection method, and identify potential biases. Encourage them to consider factors like language used, fairness, and respect for privacy. Explain that bias can influence data collection in various ways. This can include: - Leading questions in surveys that sway responses. - Unrepresentative samples that don't reflect the whole population. - Observer bias where the observer's expectations influence what they record. Ask learners to brainstorm situations where bias might occur in different data collection methods (e.g., asking leading questions in an interview, focusing on negative aspects during observation). Use sticky notes to collect their ideas on the board. Discuss strategies to minimize bias: - Wording questions in a neutral and unbiased way. - Selecting a representative sample for surveys or interviews. - Having clear guidelines for observation to minimize subjective interpretation. Show learners examples of biased data collection in real-world contexts (e.g., leading questions in a news poll, focusing only on positive aspects in a product review). Discuss how identifying bias helps us evaluate the credibility of data sources.	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending:	DAY:		Subject: Mathematics	
Duration: 60MINS			Strand: Handling Data	
Class: B9	Class Size:		Sub Strand: Data	
Content Standard: B9.4.I. 2 Select, justify, and use appropriate methods of collecting data (quantitative and qualitative), organise and analyse the data (grouped/ungrouped) to interpret the results using the descriptive statistics (measures of central tendency and range)		Indicator: B9.4.I.2.2 Organise and analyse data and interpret the results using the descriptive statistics (i.e. minimum, maximum, measures of central tendency and range) to answer a given question		Lesson: I of I
Performance Indicator: Learners can able to calculate descriptive statistics (minimum, maximum, range, mean, median, mode) and able to calculate descriptive statistics (minimum, maximum, range, mean, median, mode)			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving	
References: Mathematics Curriculum Pg.				
New words:				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Present a data set with descriptive statistics already calculated (e.g., minimum, maximum, mean test scores for a class). Without revealing the data itself, ask learners what they can learn about the test scores based on the statistics provided. Introduce descriptive statistics as tools to summarize and understand data.			
PHASE 2: NEW LEARNING	Show learners an unorganized representing test scores). Ask them why organizing the Discuss the benefits of using fred least to greatest. Introduce the concepts of min (largest value) in a data set. Show learners how to identify frequency table. Define the range as the differ values.	data set (e.g., a list ata is important b equency tables or mum (smallest val these values in an ce between the m	random numbers re analyzing it. dering data from and maximum dered data set or imum and minimum	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Explain how it shows the spread of data points. Guide learners through calculating the range for a data set. Introduce the mean (average) as a measure of central tendency, representing the sum of all values divided by the number of values. Show learners how to calculate the mean for a data set using a formula or a calculator Define the median as the middle value when the data is ordered from least to greatest. In case of an even number of data points, the median is the average of the two middle values. Demonstrate how to find the median in a data set. Introduce the mode as the most frequent value in a data set. Learners can identify the mode by examining a frequency table or the distribution of data points. Write this on the board: Ages of learners in a drama club (years): $13,14,15,15,16,16,17,17$ Challenge learners to calculate all the descriptive statistics (minimum, maximum, range, mean, median, mode) for this data set. Guide them through the process and answer any questions they may have. Assessment I: Thirty bulbs were life-tested and their lifespan to the nearest hour are as follows: Present the raw data in a frequency table by completing the table below:	

	Lifespan of Bulbs (hours) Tally Frequency $164-167$ $168-171$ $172-175$ $176-179$ Find (minimum, maximum, measures of central tendency and range) i. The minimum lifespan, to the nearest hour, of the bulbs tested. ii. The maximum lifespan, to the nearest hour, of the bulbs tested. iii. The range of the data collected from the life-testing. iv. What is the mean lifespan of the bulbs? v. What is the median of the lifespan of the bulbs? vi. What is the mode of the lifespan of the bulbs? vii. When placing an order for the bulbs tested to sell in your shop, which of them will you consider buying?	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

